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Recursion is one of the central ideas of computer
science!

Classical Recursion of Quantum Programs

I Recursive procedure in quantum programming language QPL
[Selinger, Mathematical Structures in Computer Science’2004].

I Quantum while-loops [Ying, Feng, Acta Informatica’2010].

I “Quantum data, classical control” [Selinger]:

The control flow of quantum recursions is classical: branchings
are determined by the outcomes of quantum measurements.

I Example:
while M[q] = 1 do S od
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How to define quantum control flow?

I “Quantum data, quantum control” [Altenkirch and Grattage,
LICS’2005]

I “Coined” quantum case statement [Ying, Foundations of Quantum
Programming, Morgan Kaufmann 2016]

Quantum Case Statement

I Classical Case Statement:

if b then S1 else S2 fi

I Classical Case Statement in Quantum Programming:

if M[q] = 0→ S1

� 1→ S2

fi
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Quantum Case Statement
I Introduce external quantum coin c: Hc = span{|0〉, |1〉}

I U0, U1 unitary operators on quantum system q: Hq

I Quantum case statement employing coin c:

qif [c] |0〉 → U0[q]
� |1〉 → U1[q]

fiq

I Semantics: unitary operator U inHc ⊗Hq:

U|0, ψ〉 = |0〉U0|ψ〉, U|1, ψ〉 = |1〉U1|ψ〉
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Quantum Choice
I V a unitary operator inHc.

I Quantum choice of U0[q], U1[q] with coin-tossing V[c]:

U0[q]⊕V[c] U1[q]
def
= V[c]; qif [c] |0〉 → U0[q]

� |1〉 → U1[q]
fiq
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External Quantum Coin
I Superpositions of time evolutions of a quantum system

[Aharonov, Anandan, Popescu, Vaidman, Plysical Review Letters
1990].

I Quantum walks [Ambainis, Bach, Nayak, Vishwanath, Watrous,
STOC’2001; Aharonov, Ambainis, Kempe, Vazirani, STOC’2001].

Quantum walk

I One-dimensional random walk - a particle moves on a line
marked by integers Z; at each step it moves one position left or
right, depending on the flip of a fair coin.

I Hadamard walk - a quantum variant.
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Quantum walk
I Hilbert spaceHd ⊗Hp.

I Hd = span{|L〉, |R〉}, L, R — direction Left and Right.
I Hp = span{|n〉 : n ∈ Z}, n — the position marked by integer n.
I One step of Hadamard walk:

W = T(H⊗ I)

I Translation T: unitary operator inHd ⊗Hp

T|L, n〉 = |L, n− 1〉, T|R, n〉 = |R, n + 1〉

I Hadamard transformHd:

H =
1√

2

(
1 1
1 −1

)

I Hadamard walk — repeated applications of operator W.
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Look quantum walk in a new way!

I Define left and right translation TL and TR in spaceHp:

TL|n〉 = |n− 1〉, TR|n〉 = |n + 1〉

I Translation operator T is a quantum case statement:

T = qif [d] |L〉 → TL[p]
� |R〉 → TR[p]

fiq

I Single-step walk operator W is a quantum choice:

TL[p]⊕H[d] TR[p]
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Quantum recursion with quantum control flow can be
defined based on quantum case statement

A Quantum Programming Language

Alphabet:
I Two sets of quantum variables:

1. principal system variables p, q, ...;
2. coin variables c, d, ....

I A set of procedure identifiers X, X1, X2, ....

Syntax

P ::= X | abort | skip | U[q, c] | P1; P2 | qif [c](�i · |i〉 → Pi) fiq
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Quantum choice

[P(c)]
⊕

i
(|i〉 → Pi)

4
= P; qif [c] (�i · |i〉 → Pi) end.

“Superposition of Programs”

I Quantum choice first runs a coin-tossing subprogram P followed
by an alternation of a family of subprograms P0, P1, ....

I Coin-tossing subprogram P creates a superposition of the
execution paths of P0, P1, ...,

I During the execution of the alternation, each Pi is running along
its own path, but the whole program is executed in a
superposition of execution paths of P0, P1, ....
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Semantics of quantum programs without recursion

I H— Hilbert space of the principal system.

I Semantics ~P� of a program P without procedure identifiers:

1. If P = abort, then ~P� = 0 (the zero operator inH);
2. If P = skip, then ~P� = I (the identity operator inH);
3. If P = U[q, c], then ~P� = U;
4. If P = P1; P2, then ~P� = ~P2� · ~P1�;
5. If P = qif [c](�i · |i〉 → Pi) fiq, then

~P� = �i(|i〉 → ~Pi�) = ∑
i
(|i〉〈i| ⊗ ~Pi�) .
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Quantum recursive programs

I Let X1, ..., Xm be different procedure identifiers. A declaration for
X1, ..., Xm is a system of equations:

S :


X1 ⇐ P1,

......
Xm ⇐ Pm,

where Pi = Pi[X1, ..., Xm] contains at most procedure identifiers
X1, ..., Xm.

I A recursive program consists of a main statement
P = P[X1, ..., Xm] and a declaration S for X1, ..., Xm.

Question: How to define semantics of quantum recursive
programs?
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Recursive Hadamard Walk
I The walk first runs coin-tossing operator H[d], and then a

quantum case statement:

I if coin d is in state |L〉 then the walker moves one position left;
I if d is in state |R〉 then it moves one position right, followed by a

procedure behaving as the recursive walk itself.
I Program X declared by recursive equation:

X⇐ TL[p]⊕H[d] (TR[p]; X)
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More Interesting Recursive Hardamard Walk

I Let n ≥ 2. Program declared by recursive equation:

X⇐ ((TL[p]; X)⊕H[d] (TR[p]; X)); (TL[p]⊕H[d] TR[p])n

(X, |L〉d|0〉p)→ ...

→ 1
2
√

2
[(X, |L〉d| − 3〉p) + (X, |R〉d| − 1〉p)

+ (X, |L〉d| − 1〉p)− (X, |R〉d|1〉p)
+ (X, |L〉d| − 1〉p) + (X, |R〉d|1〉p)
− (X, |L〉d|1〉p) + (X, |R〉d|3〉p)]

I Configurations −(X, |R〉d|1〉p) and (X, |R〉d|1〉p) cancel one
another.

Question: how to solve quantum recursive equations?
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Syntactic Approximation

I Recursive program X declared by equation

X⇐ F(X)

I Syntactic approximations:{
X(0) = Abort,
X(n+1) = F[X(n)/X] for n ≥ 0.

X(n) is the nth syntactic approximation of X.
I Semantics ~X� of X is the limit:

~X� = lim
n→∞
~X(n)�
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Example - Recursive Hadamard Walk

X(0) = abort,

X(1) = TL[p]⊕H[d] (TR[p]; abort),

X(2) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; abort)),

X(3) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; TL[p]⊕H[d2]

(TR[p]; abort))),

............

Observation
I Continuously introduce new “coin” to avoid variable conflict.

I Variables d, d1, d2, ... denote identical particles.
I The number of coin particles needed in running recursive walk is

unknown beforehand.
I We need to deal with quantum systems where the number of particles

of the same type may vary.
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Fock Spaces

I The principle of symmetrisation: the states of n identical
particles are either completely symmetric or completely
antisymmetric with respect to the permutations of the particles.
[ bosons - symmetric; fermions - antisymmetric]

I H— the Hilbert space of one particle.
I For each permutation π of 1, ..., n, define operator Pπ inH⊗n:

Pπ |ψ1 ⊗ ...⊗ ψn〉 = |ψπ(1) ⊗ ...⊗ ψπ(n)〉

I Define symmetrisation and antisymmetrisation operators in
H⊗n:

S+ =
1
n! ∑

π

Pπ , S− =
1
n! ∑

π

(−1)πPπ
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Fock Spaces
v = + for bosons, v = − for fermions.
I Write

|ψ1, ..., ψn〉v = Sv|ψ1 ⊗ ...⊗ ψn〉.

I State spaces of n bosons and fermions:

H⊗n
v = SvH⊗n = span{|ψ1, ..., ψn〉v : |ψ1〉, ..., |ψn〉 are inH}

I Vacuum state |0〉

H⊗0
v = H⊗0 = span{|0〉}

I Space of the states of variable particle number is Fock space:

Fv(H) =
∞

∑
n=0
H⊗n

v

I Free Fock space:

F (H) =
∞

∑
n=0
H⊗n
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Evolution Fock Spaces

I Evolution of one particle: unitary operator U.

I Evolution of n particles without mutual interactions: operator U
inH⊗n:

U|ψ1 ⊗ ...⊗ ψn〉 = |Uψ1 ⊗ ...⊗Uψn〉
I Symmetrisation:

U|ψ1, ..., ψn〉v = |Uψ1, ...Uψn〉v.

I Extend to Fock spaces Fv(H) and F (H):

U

(
∞

∑
n=0
|Ψ(n)〉

)
=

∞

∑
n=0

U|Ψ(n)〉
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Creation and Annihilation of Particles
I Transitions between states of different particle numbers.

I Creation operator a∗(ψ) in Fv(H):

a∗(ψ)|ψ1, ..., ψn〉v =
√

n + 1|ψ, ψ1, ..., ψn〉v

Add a particle in individual state |ψ〉 to the system of n particles
without modifying their respective states.

I Annihilation operator a(ψ) — Hermitian conjugate of a∗(ψ):

a(ψ)|0〉 = 0,

a(ψ)|ψ1, ..., ψn〉v =
1√

n

n

∑
i=1

(v)i−1〈ψ|ψi〉|ψ1, ..., ψi−1, ψi+1, ..., ψn〉v

Decrease the number of particles by one unit, while preserving
the symmetry of state.
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Second quantisation provides us with necessary tools for
defining semantics of quantum recursions!

A domain of operators in free Fock space

I H and K— two Hilbert spaces

I F (H) — free Fock space overH.
I O(F (H)⊗K) — the set of all operators of the form

A =
∞

∑
n=0

A(n),

where A(n) is an operator inH⊗n ⊗K.
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Order and Operations on O(F (H)⊗K)
I Flat order: A = ∑∞

n=0 A(n), B = ∑∞
n=0 B(n)

I A v B if and only if

I either for all n ≥ 0, A(n) = B(n), or
I there exists an integer n0 such that A(n) = B(n) for all 0 ≤ n ≤ n0 and

A(n) = 0 for all n > n0.

I Product:

A · B =
∞

∑
n=0

(A(n) · B(n)) .

I Guarded composition:

�i (|i〉 → Ai) =
∞

∑
n=0

(
∑

i
(|i〉〈i| ⊗Ai(n))

)
.
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Notation
I C — the set of quantum coins inP = P[X1, ..., Xm].

I HC =
⊗

c∈CHc, whereHc is the Hilbert space of coin c.
I The principal system of P is the composition of the systems

denoted by principal variables in P.
I H— the Hilbert space of the principal system.
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Semantic functional
Semantic functional of program scheme P:

~P� : O(F (HC)⊗H)m → O(F (HC)⊗H).

For any A1, ..., Am ∈ O(F (HC)⊗H),

~P�(A1, ...,Am)

is inductively defined:
I If P = abort, then ~P�(A1, ..., Am) is the zero operator

A = ∑∞
n=0 A(n) with A(n) = 0 (the zero operator inH⊗n

C ⊗H);

I If P = skip, then ~P�(A1, ..., Am) is the identity operator
A = ∑∞

n=0 A(n) with A(n) = I (the identity operator in
H⊗n

C ⊗H);
I If P = U[q, c], then ~P�(A1, ..., Am) is the cylindrical extension of

U: A = ∑∞
n=0 A(n) with A(n) = U⊗ I1 ⊗ I2 ⊗ I3, where I1 is the

identity operator in the Hilbert space of those coins not in c, I2 is
the identity operator inH⊗(n−1)

C , and I3 is the identity operator
in the Hilbert space of those principal variables not in q;
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Semantic functional
I If P = Xj (1 ≤ j ≤ m), then ~P�(A1, ..., Am) = Aj;

If P = P1; P2, then

~P�(A1, ..., Am) = ~P2�(A1, ..., Am) · ~P1�(A1, ..., Am);

If P = qif [c](�i · |i〉 → Pi) fiq, then

~P�(A1, ..., Am) = �i (|i〉 → ~Pi�(A1, ..., Am)) .



Theorem — Continuity of Semantic Functionals
Semantic functional

~P� : (O(F (HC)⊗H)m,v)→ (O(F (HC)⊗H),v)

is continuous.



Creation functional
I Creation functional

C : O(F (HC)⊗H)→ O(F (HC)⊗H)

is defined: for any A = ∑∞
n=0 A(n),

C(A) =
∞

∑
n=0

(I⊗A(n))

where I is the identity operator inHC.

I Intuition — creation functional C moves all coins c0, c1, c2, ... one
position to the right so that ci becomes ci+1 for all i = 0, 1, 2, ....
Thus, a new position is created at the left end for a new coin c0.

Lemma — Continuity of Creation Functional
Creation functional

C : (O(F (HC)⊗H),v)→ (O(F (HC)⊗H),v)

is continuous.
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Corollary
P = P[X1, ..., Xm] a program scheme. Define:

(C⊗m ◦ ~P�)(A1, ..., Am) = ~P�(C(A1), ..., C(Am)).

Then functional

C⊗m ◦ ~P� : (O(F (HC)⊗H)⊗m,v)→ (O(F (HC)⊗H),v)

is continuous.

Notation
I Consider a recursive program P declared by system of recursive

equations:

S :


X1 ⇐ P1,

......
Xm ⇐ Pm,
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Notation
I System S of recursive equations induces semantic functional:

~S� : O(F (HC)⊗H)⊗m → O(F (HC)⊗H)m,
~S�(A1, ..., Am) = ((Cm ◦ ~P1�)(A1, ..., Am), ...,

(Cm ◦ ~Pm�)(A1, ..., Am))

I Semantical functional

~S� : (O(F (HC)⊗H)⊗m,v)→ (O(F (HC)⊗H)m,v)

is continuous.
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Fixed point semantics

I Knaster-Tarski Fixed Point Theorem: ~S� has the least fixed point
µ~S�.

Definition
The fixed point semantics of recursive program P declared by S:

~P�fix = ~P�(A∗1 , ..., A∗m) ∈ O(F (HC)⊗H)

where µ~S� = (A∗1 , ..., A∗m).



Fixed point semantics

I Knaster-Tarski Fixed Point Theorem: ~S� has the least fixed point
µ~S�.

Definition
The fixed point semantics of recursive program P declared by S:

~P�fix = ~P�(A∗1 , ..., A∗m) ∈ O(F (HC)⊗H)

where µ~S� = (A∗1 , ..., A∗m).



Theorem — Equivalence of Denotational Semantics and
Operational Semantics

1. For each k, {~X(n)
k �}

∞
n=0 is an increasing chain and

~X(∞)
k �

4
= lim

n→∞
~X(n)

k � =
∞⊔

n=0
~X(n)

k �

exists in O(F (HC)⊗H).

2. (~X(∞)
1 �, ..., ~X(∞)

m �) = µ~S� is the least fixed point of semantic
functional ~S�.
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Solutions of recursive equations in Boson/Fermion Fock
space

Symmetrisation/anti-symmetrisation of the solutions of recursive
equations in free Fock space!

Principal System Semantics

I Each state |Ψ〉 in Fock space Fv(Hd) induces mapping:

~X, Ψ�p : pure states→ partial density operators inHp

~X, Ψ�p(|ψ〉) = trF (Hd)
(|Φ〉〈Φ|)

where |Φ〉 = ~X�(|Ψ〉 ⊗ |ψ〉)

I Principal system semantics of X with coin initialisation |Ψ〉:
mapping ~X, Ψ�p.
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Example — Recursive Quantum Walk{
X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

I Coherent state of bosons in Boson Fock space F+(H):

|ψ〉coh = exp
(
−1

2
〈ψ|ψ〉

) ∞

∑
n=0

[a∗(ψ)]n

n!
|0〉

I The walk starts from position 0 and the coins are initialised in
the coherent states of bosons corresponding to |L〉:

~X, Lcoh�p(|0〉) =
1√

e

(
∞

∑
k=0

1
22k+1 | − 1〉〈−1|+

∞

∑
k=0

1
22k+2 |2〉〈2|

)

=
1√

e

(
2
3
| − 1〉〈−1|+ 1

3
|2〉〈2|

)
.
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Problems:
I What kind of problems can be solved more conveniently by

using quantum recursion?

I Hoare logic for quantum while-loops defined using quantum
coins?

I Hoare logic for quantum while-programs with classical controls
[Ying, TOPLAS’2011]

I What kind of physical systems can be used to implement
quantum recursion?



Problems:
I What kind of problems can be solved more conveniently by

using quantum recursion?
I Hoare logic for quantum while-loops defined using quantum

coins?

I Hoare logic for quantum while-programs with classical controls
[Ying, TOPLAS’2011]

I What kind of physical systems can be used to implement
quantum recursion?



Problems:
I What kind of problems can be solved more conveniently by

using quantum recursion?
I Hoare logic for quantum while-loops defined using quantum

coins?
I Hoare logic for quantum while-programs with classical controls

[Ying, TOPLAS’2011]

I What kind of physical systems can be used to implement
quantum recursion?



Problems:
I What kind of problems can be solved more conveniently by

using quantum recursion?
I Hoare logic for quantum while-loops defined using quantum

coins?
I Hoare logic for quantum while-programs with classical controls

[Ying, TOPLAS’2011]
I What kind of physical systems can be used to implement

quantum recursion?



Thank You!
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