
Quantum Recursion and Second
Quantisation

Mingsheng Ying

University of Technology Sydney, Australia
and

Tsinghua University, China

Outline

1. Introduction

2. Quantum Case Statement

3. Syntax of Quantum Recursive Programs

4. Recursive Quantum Walks

5. Second Quantisation

6. Solving Recursive Equations in Free Fock Space

7. Quantum Recursion in Boson and Fermion Fock Spaces

8. Conclusion

Outline

1. Introduction

2. Quantum Case Statement

3. Syntax of Quantum Recursive Programs

4. Recursive Quantum Walks

5. Second Quantisation

6. Solving Recursive Equations in Free Fock Space

7. Quantum Recursion in Boson and Fermion Fock Spaces

8. Conclusion

Recursion is one of the central ideas of computer
science!

Classical Recursion of Quantum Programs

I Recursive procedure in quantum programming language QPL
[Selinger, Mathematical Structures in Computer Science’2004].

I Quantum while-loops [Ying, Feng, Acta Informatica’2010].

I “Quantum data, classical control” [Selinger]:

The control flow of quantum recursions is classical: branchings
are determined by the outcomes of quantum measurements.

I Example:
while M[q] = 1 do S od

Recursion is one of the central ideas of computer
science!

Classical Recursion of Quantum Programs

I Recursive procedure in quantum programming language QPL
[Selinger, Mathematical Structures in Computer Science’2004].

I Quantum while-loops [Ying, Feng, Acta Informatica’2010].

I “Quantum data, classical control” [Selinger]:

The control flow of quantum recursions is classical: branchings
are determined by the outcomes of quantum measurements.

I Example:
while M[q] = 1 do S od

Recursion is one of the central ideas of computer
science!

Classical Recursion of Quantum Programs

I Recursive procedure in quantum programming language QPL
[Selinger, Mathematical Structures in Computer Science’2004].

I Quantum while-loops [Ying, Feng, Acta Informatica’2010].

I “Quantum data, classical control” [Selinger]:

The control flow of quantum recursions is classical: branchings
are determined by the outcomes of quantum measurements.

I Example:
while M[q] = 1 do S od

Recursion is one of the central ideas of computer
science!

Classical Recursion of Quantum Programs

I Recursive procedure in quantum programming language QPL
[Selinger, Mathematical Structures in Computer Science’2004].

I Quantum while-loops [Ying, Feng, Acta Informatica’2010].

I “Quantum data, classical control” [Selinger]:

The control flow of quantum recursions is classical: branchings
are determined by the outcomes of quantum measurements.

I Example:
while M[q] = 1 do S od

Outline

1. Introduction

2. Quantum Case Statement

3. Syntax of Quantum Recursive Programs

4. Recursive Quantum Walks

5. Second Quantisation

6. Solving Recursive Equations in Free Fock Space

7. Quantum Recursion in Boson and Fermion Fock Spaces

8. Conclusion

How to define quantum control flow?

I “Quantum data, quantum control” [Altenkirch and Grattage,
LICS’2005]

I “Coined” quantum case statement [Ying, Foundations of Quantum
Programming, Morgan Kaufmann 2016]

Quantum Case Statement

I Classical Case Statement:

if b then S1 else S2 fi

I Classical Case Statement in Quantum Programming:

if M[q] = 0→ S1

� 1→ S2

fi

How to define quantum control flow?

I “Quantum data, quantum control” [Altenkirch and Grattage,
LICS’2005]

I “Coined” quantum case statement [Ying, Foundations of Quantum
Programming, Morgan Kaufmann 2016]

Quantum Case Statement

I Classical Case Statement:

if b then S1 else S2 fi

I Classical Case Statement in Quantum Programming:

if M[q] = 0→ S1

� 1→ S2

fi

How to define quantum control flow?

I “Quantum data, quantum control” [Altenkirch and Grattage,
LICS’2005]

I “Coined” quantum case statement [Ying, Foundations of Quantum
Programming, Morgan Kaufmann 2016]

Quantum Case Statement
I Classical Case Statement:

if b then S1 else S2 fi

I Classical Case Statement in Quantum Programming:

if M[q] = 0→ S1

� 1→ S2

fi

How to define quantum control flow?

I “Quantum data, quantum control” [Altenkirch and Grattage,
LICS’2005]

I “Coined” quantum case statement [Ying, Foundations of Quantum
Programming, Morgan Kaufmann 2016]

Quantum Case Statement
I Classical Case Statement:

if b then S1 else S2 fi

I Classical Case Statement in Quantum Programming:

if M[q] = 0→ S1

� 1→ S2

fi

Quantum Case Statement
I Introduce external quantum coin c: Hc = span{|0〉, |1〉}

I U0, U1 unitary operators on quantum system q: Hq

I Quantum case statement employing coin c:

qif [c] |0〉 → U0[q]
� |1〉 → U1[q]

fiq

I Semantics: unitary operator U inHc ⊗Hq:

U|0, ψ〉 = |0〉U0|ψ〉, U|1, ψ〉 = |1〉U1|ψ〉

Quantum Case Statement
I Introduce external quantum coin c: Hc = span{|0〉, |1〉}
I U0, U1 unitary operators on quantum system q: Hq

I Quantum case statement employing coin c:

qif [c] |0〉 → U0[q]
� |1〉 → U1[q]

fiq

I Semantics: unitary operator U inHc ⊗Hq:

U|0, ψ〉 = |0〉U0|ψ〉, U|1, ψ〉 = |1〉U1|ψ〉

Quantum Case Statement
I Introduce external quantum coin c: Hc = span{|0〉, |1〉}
I U0, U1 unitary operators on quantum system q: Hq

I Quantum case statement employing coin c:

qif [c] |0〉 → U0[q]
� |1〉 → U1[q]

fiq

I Semantics: unitary operator U inHc ⊗Hq:

U|0, ψ〉 = |0〉U0|ψ〉, U|1, ψ〉 = |1〉U1|ψ〉

Quantum Case Statement
I Introduce external quantum coin c: Hc = span{|0〉, |1〉}
I U0, U1 unitary operators on quantum system q: Hq

I Quantum case statement employing coin c:

qif [c] |0〉 → U0[q]
� |1〉 → U1[q]

fiq

I Semantics: unitary operator U inHc ⊗Hq:

U|0, ψ〉 = |0〉U0|ψ〉, U|1, ψ〉 = |1〉U1|ψ〉

Quantum Choice
I V a unitary operator inHc.

I Quantum choice of U0[q], U1[q] with coin-tossing V[c]:

U0[q]⊕V[c] U1[q]
def
= V[c]; qif [c] |0〉 → U0[q]

� |1〉 → U1[q]
fiq

Quantum Choice
I V a unitary operator inHc.
I Quantum choice of U0[q], U1[q] with coin-tossing V[c]:

U0[q]⊕V[c] U1[q]
def
= V[c]; qif [c] |0〉 → U0[q]

� |1〉 → U1[q]
fiq

External Quantum Coin
I Superpositions of time evolutions of a quantum system

[Aharonov, Anandan, Popescu, Vaidman, Plysical Review Letters
1990].

I Quantum walks [Ambainis, Bach, Nayak, Vishwanath, Watrous,
STOC’2001; Aharonov, Ambainis, Kempe, Vazirani, STOC’2001].

Quantum walk

I One-dimensional random walk - a particle moves on a line
marked by integers Z; at each step it moves one position left or
right, depending on the flip of a fair coin.

I Hadamard walk - a quantum variant.

External Quantum Coin
I Superpositions of time evolutions of a quantum system

[Aharonov, Anandan, Popescu, Vaidman, Plysical Review Letters
1990].

I Quantum walks [Ambainis, Bach, Nayak, Vishwanath, Watrous,
STOC’2001; Aharonov, Ambainis, Kempe, Vazirani, STOC’2001].

Quantum walk

I One-dimensional random walk - a particle moves on a line
marked by integers Z; at each step it moves one position left or
right, depending on the flip of a fair coin.

I Hadamard walk - a quantum variant.

External Quantum Coin
I Superpositions of time evolutions of a quantum system

[Aharonov, Anandan, Popescu, Vaidman, Plysical Review Letters
1990].

I Quantum walks [Ambainis, Bach, Nayak, Vishwanath, Watrous,
STOC’2001; Aharonov, Ambainis, Kempe, Vazirani, STOC’2001].

Quantum walk
I One-dimensional random walk - a particle moves on a line

marked by integers Z; at each step it moves one position left or
right, depending on the flip of a fair coin.

I Hadamard walk - a quantum variant.

External Quantum Coin
I Superpositions of time evolutions of a quantum system

[Aharonov, Anandan, Popescu, Vaidman, Plysical Review Letters
1990].

I Quantum walks [Ambainis, Bach, Nayak, Vishwanath, Watrous,
STOC’2001; Aharonov, Ambainis, Kempe, Vazirani, STOC’2001].

Quantum walk
I One-dimensional random walk - a particle moves on a line

marked by integers Z; at each step it moves one position left or
right, depending on the flip of a fair coin.

I Hadamard walk - a quantum variant.

Quantum walk
I Hilbert spaceHd ⊗Hp.

I Hd = span{|L〉, |R〉}, L, R — direction Left and Right.
I Hp = span{|n〉 : n ∈ Z}, n — the position marked by integer n.
I One step of Hadamard walk:

W = T(H⊗ I)

I Translation T: unitary operator inHd ⊗Hp

T|L, n〉 = |L, n− 1〉, T|R, n〉 = |R, n + 1〉

I Hadamard transformHd:

H =
1√

2

(
1 1
1 −1

)

I Hadamard walk — repeated applications of operator W.

Quantum walk
I Hilbert spaceHd ⊗Hp.
I Hd = span{|L〉, |R〉}, L, R — direction Left and Right.

I Hp = span{|n〉 : n ∈ Z}, n — the position marked by integer n.
I One step of Hadamard walk:

W = T(H⊗ I)

I Translation T: unitary operator inHd ⊗Hp

T|L, n〉 = |L, n− 1〉, T|R, n〉 = |R, n + 1〉

I Hadamard transformHd:

H =
1√

2

(
1 1
1 −1

)

I Hadamard walk — repeated applications of operator W.

Quantum walk
I Hilbert spaceHd ⊗Hp.
I Hd = span{|L〉, |R〉}, L, R — direction Left and Right.
I Hp = span{|n〉 : n ∈ Z}, n — the position marked by integer n.

I One step of Hadamard walk:

W = T(H⊗ I)

I Translation T: unitary operator inHd ⊗Hp

T|L, n〉 = |L, n− 1〉, T|R, n〉 = |R, n + 1〉

I Hadamard transformHd:

H =
1√

2

(
1 1
1 −1

)

I Hadamard walk — repeated applications of operator W.

Quantum walk
I Hilbert spaceHd ⊗Hp.
I Hd = span{|L〉, |R〉}, L, R — direction Left and Right.
I Hp = span{|n〉 : n ∈ Z}, n — the position marked by integer n.
I One step of Hadamard walk:

W = T(H⊗ I)

I Translation T: unitary operator inHd ⊗Hp

T|L, n〉 = |L, n− 1〉, T|R, n〉 = |R, n + 1〉

I Hadamard transformHd:

H =
1√

2

(
1 1
1 −1

)

I Hadamard walk — repeated applications of operator W.

Quantum walk
I Hilbert spaceHd ⊗Hp.
I Hd = span{|L〉, |R〉}, L, R — direction Left and Right.
I Hp = span{|n〉 : n ∈ Z}, n — the position marked by integer n.
I One step of Hadamard walk:

W = T(H⊗ I)

I Translation T: unitary operator inHd ⊗Hp

T|L, n〉 = |L, n− 1〉, T|R, n〉 = |R, n + 1〉

I Hadamard transformHd:

H =
1√

2

(
1 1
1 −1

)

I Hadamard walk — repeated applications of operator W.

Quantum walk
I Hilbert spaceHd ⊗Hp.
I Hd = span{|L〉, |R〉}, L, R — direction Left and Right.
I Hp = span{|n〉 : n ∈ Z}, n — the position marked by integer n.
I One step of Hadamard walk:

W = T(H⊗ I)

I Translation T: unitary operator inHd ⊗Hp

T|L, n〉 = |L, n− 1〉, T|R, n〉 = |R, n + 1〉

I Hadamard transformHd:

H =
1√

2

(
1 1
1 −1

)

I Hadamard walk — repeated applications of operator W.

Quantum walk
I Hilbert spaceHd ⊗Hp.
I Hd = span{|L〉, |R〉}, L, R — direction Left and Right.
I Hp = span{|n〉 : n ∈ Z}, n — the position marked by integer n.
I One step of Hadamard walk:

W = T(H⊗ I)

I Translation T: unitary operator inHd ⊗Hp

T|L, n〉 = |L, n− 1〉, T|R, n〉 = |R, n + 1〉

I Hadamard transformHd:

H =
1√

2

(
1 1
1 −1

)

I Hadamard walk — repeated applications of operator W.

Look quantum walk in a new way!

I Define left and right translation TL and TR in spaceHp:

TL|n〉 = |n− 1〉, TR|n〉 = |n + 1〉

I Translation operator T is a quantum case statement:

T = qif [d] |L〉 → TL[p]
� |R〉 → TR[p]

fiq

I Single-step walk operator W is a quantum choice:

TL[p]⊕H[d] TR[p]

Look quantum walk in a new way!

I Define left and right translation TL and TR in spaceHp:

TL|n〉 = |n− 1〉, TR|n〉 = |n + 1〉

I Translation operator T is a quantum case statement:

T = qif [d] |L〉 → TL[p]
� |R〉 → TR[p]

fiq

I Single-step walk operator W is a quantum choice:

TL[p]⊕H[d] TR[p]

Look quantum walk in a new way!

I Define left and right translation TL and TR in spaceHp:

TL|n〉 = |n− 1〉, TR|n〉 = |n + 1〉

I Translation operator T is a quantum case statement:

T = qif [d] |L〉 → TL[p]
� |R〉 → TR[p]

fiq

I Single-step walk operator W is a quantum choice:

TL[p]⊕H[d] TR[p]

Outline

1. Introduction

2. Quantum Case Statement

3. Syntax of Quantum Recursive Programs

4. Recursive Quantum Walks

5. Second Quantisation

6. Solving Recursive Equations in Free Fock Space

7. Quantum Recursion in Boson and Fermion Fock Spaces

8. Conclusion

Quantum recursion with quantum control flow can be
defined based on quantum case statement

A Quantum Programming Language

Alphabet:
I Two sets of quantum variables:

1. principal system variables p, q, ...;
2. coin variables c, d,

I A set of procedure identifiers X, X1, X2,

Syntax

P ::= X | abort | skip | U[q, c] | P1; P2 | qif [c](�i · |i〉 → Pi) fiq

Quantum recursion with quantum control flow can be
defined based on quantum case statement

A Quantum Programming Language

Alphabet:
I Two sets of quantum variables:

1. principal system variables p, q, ...;

2. coin variables c, d,
I A set of procedure identifiers X, X1, X2,

Syntax

P ::= X | abort | skip | U[q, c] | P1; P2 | qif [c](�i · |i〉 → Pi) fiq

Quantum recursion with quantum control flow can be
defined based on quantum case statement

A Quantum Programming Language

Alphabet:
I Two sets of quantum variables:

1. principal system variables p, q, ...;
2. coin variables c, d,

I A set of procedure identifiers X, X1, X2,

Syntax

P ::= X | abort | skip | U[q, c] | P1; P2 | qif [c](�i · |i〉 → Pi) fiq

Quantum recursion with quantum control flow can be
defined based on quantum case statement

A Quantum Programming Language

Alphabet:
I Two sets of quantum variables:

1. principal system variables p, q, ...;
2. coin variables c, d,

I A set of procedure identifiers X, X1, X2,

Syntax

P ::= X | abort | skip | U[q, c] | P1; P2 | qif [c](�i · |i〉 → Pi) fiq

Quantum choice

[P(c)]
⊕

i
(|i〉 → Pi)

4
= P; qif [c] (�i · |i〉 → Pi) end.

“Superposition of Programs”

I Quantum choice first runs a coin-tossing subprogram P followed
by an alternation of a family of subprograms P0, P1,

I Coin-tossing subprogram P creates a superposition of the
execution paths of P0, P1, ...,

I During the execution of the alternation, each Pi is running along
its own path, but the whole program is executed in a
superposition of execution paths of P0, P1,

Quantum choice

[P(c)]
⊕

i
(|i〉 → Pi)

4
= P; qif [c] (�i · |i〉 → Pi) end.

“Superposition of Programs”

I Quantum choice first runs a coin-tossing subprogram P followed
by an alternation of a family of subprograms P0, P1,

I Coin-tossing subprogram P creates a superposition of the
execution paths of P0, P1, ...,

I During the execution of the alternation, each Pi is running along
its own path, but the whole program is executed in a
superposition of execution paths of P0, P1,

Quantum choice

[P(c)]
⊕

i
(|i〉 → Pi)

4
= P; qif [c] (�i · |i〉 → Pi) end.

“Superposition of Programs”

I Quantum choice first runs a coin-tossing subprogram P followed
by an alternation of a family of subprograms P0, P1,

I Coin-tossing subprogram P creates a superposition of the
execution paths of P0, P1, ...,

I During the execution of the alternation, each Pi is running along
its own path, but the whole program is executed in a
superposition of execution paths of P0, P1,

Semantics of quantum programs without recursion

I H— Hilbert space of the principal system.

I Semantics ~P� of a program P without procedure identifiers:

1. If P = abort, then ~P� = 0 (the zero operator inH);
2. If P = skip, then ~P� = I (the identity operator inH);
3. If P = U[q, c], then ~P� = U;
4. If P = P1; P2, then ~P� = ~P2� · ~P1�;
5. If P = qif [c](�i · |i〉 → Pi) fiq, then

~P� = �i(|i〉 → ~Pi�) = ∑
i
(|i〉〈i| ⊗ ~Pi�) .

Semantics of quantum programs without recursion

I H— Hilbert space of the principal system.
I Semantics ~P� of a program P without procedure identifiers:

1. If P = abort, then ~P� = 0 (the zero operator inH);
2. If P = skip, then ~P� = I (the identity operator inH);
3. If P = U[q, c], then ~P� = U;
4. If P = P1; P2, then ~P� = ~P2� · ~P1�;
5. If P = qif [c](�i · |i〉 → Pi) fiq, then

~P� = �i(|i〉 → ~Pi�) = ∑
i
(|i〉〈i| ⊗ ~Pi�) .

Semantics of quantum programs without recursion

I H— Hilbert space of the principal system.
I Semantics ~P� of a program P without procedure identifiers:

1. If P = abort, then ~P� = 0 (the zero operator inH);

2. If P = skip, then ~P� = I (the identity operator inH);
3. If P = U[q, c], then ~P� = U;
4. If P = P1; P2, then ~P� = ~P2� · ~P1�;
5. If P = qif [c](�i · |i〉 → Pi) fiq, then

~P� = �i(|i〉 → ~Pi�) = ∑
i
(|i〉〈i| ⊗ ~Pi�) .

Semantics of quantum programs without recursion

I H— Hilbert space of the principal system.
I Semantics ~P� of a program P without procedure identifiers:

1. If P = abort, then ~P� = 0 (the zero operator inH);
2. If P = skip, then ~P� = I (the identity operator inH);

3. If P = U[q, c], then ~P� = U;
4. If P = P1; P2, then ~P� = ~P2� · ~P1�;
5. If P = qif [c](�i · |i〉 → Pi) fiq, then

~P� = �i(|i〉 → ~Pi�) = ∑
i
(|i〉〈i| ⊗ ~Pi�) .

Semantics of quantum programs without recursion

I H— Hilbert space of the principal system.
I Semantics ~P� of a program P without procedure identifiers:

1. If P = abort, then ~P� = 0 (the zero operator inH);
2. If P = skip, then ~P� = I (the identity operator inH);
3. If P = U[q, c], then ~P� = U;

4. If P = P1; P2, then ~P� = ~P2� · ~P1�;
5. If P = qif [c](�i · |i〉 → Pi) fiq, then

~P� = �i(|i〉 → ~Pi�) = ∑
i
(|i〉〈i| ⊗ ~Pi�) .

Semantics of quantum programs without recursion

I H— Hilbert space of the principal system.
I Semantics ~P� of a program P without procedure identifiers:

1. If P = abort, then ~P� = 0 (the zero operator inH);
2. If P = skip, then ~P� = I (the identity operator inH);
3. If P = U[q, c], then ~P� = U;
4. If P = P1; P2, then ~P� = ~P2� · ~P1�;

5. If P = qif [c](�i · |i〉 → Pi) fiq, then

~P� = �i(|i〉 → ~Pi�) = ∑
i
(|i〉〈i| ⊗ ~Pi�) .

Semantics of quantum programs without recursion

I H— Hilbert space of the principal system.
I Semantics ~P� of a program P without procedure identifiers:

1. If P = abort, then ~P� = 0 (the zero operator inH);
2. If P = skip, then ~P� = I (the identity operator inH);
3. If P = U[q, c], then ~P� = U;
4. If P = P1; P2, then ~P� = ~P2� · ~P1�;
5. If P = qif [c](�i · |i〉 → Pi) fiq, then

~P� = �i(|i〉 → ~Pi�) = ∑
i
(|i〉〈i| ⊗ ~Pi�) .

Quantum recursive programs

I Let X1, ..., Xm be different procedure identifiers. A declaration for
X1, ..., Xm is a system of equations:

S :


X1 ⇐ P1,

......
Xm ⇐ Pm,

where Pi = Pi[X1, ..., Xm] contains at most procedure identifiers
X1, ..., Xm.

I A recursive program consists of a main statement
P = P[X1, ..., Xm] and a declaration S for X1, ..., Xm.

Question: How to define semantics of quantum recursive
programs?

Quantum recursive programs

I Let X1, ..., Xm be different procedure identifiers. A declaration for
X1, ..., Xm is a system of equations:

S :


X1 ⇐ P1,

......
Xm ⇐ Pm,

where Pi = Pi[X1, ..., Xm] contains at most procedure identifiers
X1, ..., Xm.

I A recursive program consists of a main statement
P = P[X1, ..., Xm] and a declaration S for X1, ..., Xm.

Question: How to define semantics of quantum recursive
programs?

Outline

1. Introduction

2. Quantum Case Statement

3. Syntax of Quantum Recursive Programs

4. Recursive Quantum Walks

5. Second Quantisation

6. Solving Recursive Equations in Free Fock Space

7. Quantum Recursion in Boson and Fermion Fock Spaces

8. Conclusion

Recursive Hadamard Walk
I The walk first runs coin-tossing operator H[d], and then a

quantum case statement:

I if coin d is in state |L〉 then the walker moves one position left;
I if d is in state |R〉 then it moves one position right, followed by a

procedure behaving as the recursive walk itself.
I Program X declared by recursive equation:

X⇐ TL[p]⊕H[d] (TR[p]; X)

Recursive Hadamard Walk
I The walk first runs coin-tossing operator H[d], and then a

quantum case statement:
I if coin d is in state |L〉 then the walker moves one position left;

I if d is in state |R〉 then it moves one position right, followed by a
procedure behaving as the recursive walk itself.

I Program X declared by recursive equation:

X⇐ TL[p]⊕H[d] (TR[p]; X)

Recursive Hadamard Walk
I The walk first runs coin-tossing operator H[d], and then a

quantum case statement:
I if coin d is in state |L〉 then the walker moves one position left;
I if d is in state |R〉 then it moves one position right, followed by a

procedure behaving as the recursive walk itself.

I Program X declared by recursive equation:

X⇐ TL[p]⊕H[d] (TR[p]; X)

Recursive Hadamard Walk
I The walk first runs coin-tossing operator H[d], and then a

quantum case statement:
I if coin d is in state |L〉 then the walker moves one position left;
I if d is in state |R〉 then it moves one position right, followed by a

procedure behaving as the recursive walk itself.
I Program X declared by recursive equation:

X⇐ TL[p]⊕H[d] (TR[p]; X)

Recursive Hadamard Walk
I The walk first runs coin-tossing operator H[d] and then a

quantum case statement:

I if coin d is in state |L〉 then the walker moves one position left,
followed by a procedure behaving as the recursive walk itself;

I if d is in state |R〉 then it moves one position right, also followed by
a procedure behaving as the recursive walk itself.

I Program X declared by the recursive equation:

X⇐ (TL[p]; X)⊕H[d] (TR[p]; X)

I A variant declared by system of recursive equations:{
X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

Recursive Hadamard Walk
I The walk first runs coin-tossing operator H[d] and then a

quantum case statement:
I if coin d is in state |L〉 then the walker moves one position left,

followed by a procedure behaving as the recursive walk itself;

I if d is in state |R〉 then it moves one position right, also followed by
a procedure behaving as the recursive walk itself.

I Program X declared by the recursive equation:

X⇐ (TL[p]; X)⊕H[d] (TR[p]; X)

I A variant declared by system of recursive equations:{
X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

Recursive Hadamard Walk
I The walk first runs coin-tossing operator H[d] and then a

quantum case statement:
I if coin d is in state |L〉 then the walker moves one position left,

followed by a procedure behaving as the recursive walk itself;
I if d is in state |R〉 then it moves one position right, also followed by

a procedure behaving as the recursive walk itself.

I Program X declared by the recursive equation:

X⇐ (TL[p]; X)⊕H[d] (TR[p]; X)

I A variant declared by system of recursive equations:{
X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

Recursive Hadamard Walk
I The walk first runs coin-tossing operator H[d] and then a

quantum case statement:
I if coin d is in state |L〉 then the walker moves one position left,

followed by a procedure behaving as the recursive walk itself;
I if d is in state |R〉 then it moves one position right, also followed by

a procedure behaving as the recursive walk itself.
I Program X declared by the recursive equation:

X⇐ (TL[p]; X)⊕H[d] (TR[p]; X)

I A variant declared by system of recursive equations:{
X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

Recursive Hadamard Walk
I The walk first runs coin-tossing operator H[d] and then a

quantum case statement:
I if coin d is in state |L〉 then the walker moves one position left,

followed by a procedure behaving as the recursive walk itself;
I if d is in state |R〉 then it moves one position right, also followed by

a procedure behaving as the recursive walk itself.
I Program X declared by the recursive equation:

X⇐ (TL[p]; X)⊕H[d] (TR[p]; X)

I A variant declared by system of recursive equations:{
X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

More Interesting Recursive Hardamard Walk

I Let n ≥ 2. Program declared by recursive equation:

X⇐ ((TL[p]; X)⊕H[d] (TR[p]; X)); (TL[p]⊕H[d] TR[p])n

(X, |L〉d|0〉p)→ ...

→ 1
2
√

2
[(X, |L〉d| − 3〉p) + (X, |R〉d| − 1〉p)

+ (X, |L〉d| − 1〉p)− (X, |R〉d|1〉p)
+ (X, |L〉d| − 1〉p) + (X, |R〉d|1〉p)
− (X, |L〉d|1〉p) + (X, |R〉d|3〉p)]

I Configurations −(X, |R〉d|1〉p) and (X, |R〉d|1〉p) cancel one
another.

Question: how to solve quantum recursive equations?

More Interesting Recursive Hardamard Walk

I Let n ≥ 2. Program declared by recursive equation:

X⇐ ((TL[p]; X)⊕H[d] (TR[p]; X)); (TL[p]⊕H[d] TR[p])n

(X, |L〉d|0〉p)→ ...

→ 1
2
√

2
[(X, |L〉d| − 3〉p) + (X, |R〉d| − 1〉p)

+ (X, |L〉d| − 1〉p)− (X, |R〉d|1〉p)
+ (X, |L〉d| − 1〉p) + (X, |R〉d|1〉p)
− (X, |L〉d|1〉p) + (X, |R〉d|3〉p)]

I Configurations −(X, |R〉d|1〉p) and (X, |R〉d|1〉p) cancel one
another.

Question: how to solve quantum recursive equations?

Syntactic Approximation

I Recursive program X declared by equation

X⇐ F(X)

I Syntactic approximations:{
X(0) = Abort,
X(n+1) = F[X(n)/X] for n ≥ 0.

X(n) is the nth syntactic approximation of X.
I Semantics ~X� of X is the limit:

~X� = lim
n→∞
~X(n)�

Syntactic Approximation

I Recursive program X declared by equation

X⇐ F(X)

I Syntactic approximations:{
X(0) = Abort,
X(n+1) = F[X(n)/X] for n ≥ 0.

X(n) is the nth syntactic approximation of X.

I Semantics ~X� of X is the limit:

~X� = lim
n→∞
~X(n)�

Syntactic Approximation

I Recursive program X declared by equation

X⇐ F(X)

I Syntactic approximations:{
X(0) = Abort,
X(n+1) = F[X(n)/X] for n ≥ 0.

X(n) is the nth syntactic approximation of X.
I Semantics ~X� of X is the limit:

~X� = lim
n→∞
~X(n)�

Example - Recursive Hadamard Walk

X(0) = abort,

X(1) = TL[p]⊕H[d] (TR[p]; abort),

X(2) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; abort)),

X(3) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; TL[p]⊕H[d2]

(TR[p]; abort))),

............

Observation
I Continuously introduce new “coin” to avoid variable conflict.

I Variables d, d1, d2, ... denote identical particles.
I The number of coin particles needed in running recursive walk is

unknown beforehand.
I We need to deal with quantum systems where the number of particles

of the same type may vary.

Example - Recursive Hadamard Walk

X(0) = abort,

X(1) = TL[p]⊕H[d] (TR[p]; abort),

X(2) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; abort)),

X(3) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; TL[p]⊕H[d2]

(TR[p]; abort))),

............

Observation
I Continuously introduce new “coin” to avoid variable conflict.
I Variables d, d1, d2, ... denote identical particles.

I The number of coin particles needed in running recursive walk is
unknown beforehand.

I We need to deal with quantum systems where the number of particles
of the same type may vary.

Example - Recursive Hadamard Walk

X(0) = abort,

X(1) = TL[p]⊕H[d] (TR[p]; abort),

X(2) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; abort)),

X(3) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; TL[p]⊕H[d2]

(TR[p]; abort))),

............

Observation
I Continuously introduce new “coin” to avoid variable conflict.
I Variables d, d1, d2, ... denote identical particles.
I The number of coin particles needed in running recursive walk is

unknown beforehand.

I We need to deal with quantum systems where the number of particles
of the same type may vary.

Example - Recursive Hadamard Walk

X(0) = abort,

X(1) = TL[p]⊕H[d] (TR[p]; abort),

X(2) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; abort)),

X(3) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; TL[p]⊕H[d2]

(TR[p]; abort))),

............

Observation
I Continuously introduce new “coin” to avoid variable conflict.
I Variables d, d1, d2, ... denote identical particles.
I The number of coin particles needed in running recursive walk is

unknown beforehand.
I We need to deal with quantum systems where the number of particles

of the same type may vary.

Outline

1. Introduction

2. Quantum Case Statement

3. Syntax of Quantum Recursive Programs

4. Recursive Quantum Walks

5. Second Quantisation

6. Solving Recursive Equations in Free Fock Space

7. Quantum Recursion in Boson and Fermion Fock Spaces

8. Conclusion

Fock Spaces

I The principle of symmetrisation: the states of n identical
particles are either completely symmetric or completely
antisymmetric with respect to the permutations of the particles.
[bosons - symmetric; fermions - antisymmetric]

I H— the Hilbert space of one particle.
I For each permutation π of 1, ..., n, define operator Pπ inH⊗n:

Pπ |ψ1 ⊗ ...⊗ ψn〉 = |ψπ(1) ⊗ ...⊗ ψπ(n)〉

I Define symmetrisation and antisymmetrisation operators in
H⊗n:

S+ =
1
n! ∑

π

Pπ , S− =
1
n! ∑

π

(−1)πPπ

Fock Spaces

I The principle of symmetrisation: the states of n identical
particles are either completely symmetric or completely
antisymmetric with respect to the permutations of the particles.
[bosons - symmetric; fermions - antisymmetric]

I H— the Hilbert space of one particle.

I For each permutation π of 1, ..., n, define operator Pπ inH⊗n:

Pπ |ψ1 ⊗ ...⊗ ψn〉 = |ψπ(1) ⊗ ...⊗ ψπ(n)〉

I Define symmetrisation and antisymmetrisation operators in
H⊗n:

S+ =
1
n! ∑

π

Pπ , S− =
1
n! ∑

π

(−1)πPπ

Fock Spaces

I The principle of symmetrisation: the states of n identical
particles are either completely symmetric or completely
antisymmetric with respect to the permutations of the particles.
[bosons - symmetric; fermions - antisymmetric]

I H— the Hilbert space of one particle.
I For each permutation π of 1, ..., n, define operator Pπ inH⊗n:

Pπ |ψ1 ⊗ ...⊗ ψn〉 = |ψπ(1) ⊗ ...⊗ ψπ(n)〉

I Define symmetrisation and antisymmetrisation operators in
H⊗n:

S+ =
1
n! ∑

π

Pπ , S− =
1
n! ∑

π

(−1)πPπ

Fock Spaces

I The principle of symmetrisation: the states of n identical
particles are either completely symmetric or completely
antisymmetric with respect to the permutations of the particles.
[bosons - symmetric; fermions - antisymmetric]

I H— the Hilbert space of one particle.
I For each permutation π of 1, ..., n, define operator Pπ inH⊗n:

Pπ |ψ1 ⊗ ...⊗ ψn〉 = |ψπ(1) ⊗ ...⊗ ψπ(n)〉

I Define symmetrisation and antisymmetrisation operators in
H⊗n:

S+ =
1
n! ∑

π

Pπ , S− =
1
n! ∑

π

(−1)πPπ

Fock Spaces
v = + for bosons, v = − for fermions.
I Write

|ψ1, ..., ψn〉v = Sv|ψ1 ⊗ ...⊗ ψn〉.

I State spaces of n bosons and fermions:

H⊗n
v = SvH⊗n = span{|ψ1, ..., ψn〉v : |ψ1〉, ..., |ψn〉 are inH}

I Vacuum state |0〉

H⊗0
v = H⊗0 = span{|0〉}

I Space of the states of variable particle number is Fock space:

Fv(H) =
∞

∑
n=0
H⊗n

v

I Free Fock space:

F (H) =
∞

∑
n=0
H⊗n

Fock Spaces
v = + for bosons, v = − for fermions.
I Write

|ψ1, ..., ψn〉v = Sv|ψ1 ⊗ ...⊗ ψn〉.
I State spaces of n bosons and fermions:

H⊗n
v = SvH⊗n = span{|ψ1, ..., ψn〉v : |ψ1〉, ..., |ψn〉 are inH}

I Vacuum state |0〉

H⊗0
v = H⊗0 = span{|0〉}

I Space of the states of variable particle number is Fock space:

Fv(H) =
∞

∑
n=0
H⊗n

v

I Free Fock space:

F (H) =
∞

∑
n=0
H⊗n

Fock Spaces
v = + for bosons, v = − for fermions.
I Write

|ψ1, ..., ψn〉v = Sv|ψ1 ⊗ ...⊗ ψn〉.
I State spaces of n bosons and fermions:

H⊗n
v = SvH⊗n = span{|ψ1, ..., ψn〉v : |ψ1〉, ..., |ψn〉 are inH}

I Vacuum state |0〉

H⊗0
v = H⊗0 = span{|0〉}

I Space of the states of variable particle number is Fock space:

Fv(H) =
∞

∑
n=0
H⊗n

v

I Free Fock space:

F (H) =
∞

∑
n=0
H⊗n

Fock Spaces
v = + for bosons, v = − for fermions.
I Write

|ψ1, ..., ψn〉v = Sv|ψ1 ⊗ ...⊗ ψn〉.
I State spaces of n bosons and fermions:

H⊗n
v = SvH⊗n = span{|ψ1, ..., ψn〉v : |ψ1〉, ..., |ψn〉 are inH}

I Vacuum state |0〉

H⊗0
v = H⊗0 = span{|0〉}

I Space of the states of variable particle number is Fock space:

Fv(H) =
∞

∑
n=0
H⊗n

v

I Free Fock space:

F (H) =
∞

∑
n=0
H⊗n

Fock Spaces
v = + for bosons, v = − for fermions.
I Write

|ψ1, ..., ψn〉v = Sv|ψ1 ⊗ ...⊗ ψn〉.
I State spaces of n bosons and fermions:

H⊗n
v = SvH⊗n = span{|ψ1, ..., ψn〉v : |ψ1〉, ..., |ψn〉 are inH}

I Vacuum state |0〉

H⊗0
v = H⊗0 = span{|0〉}

I Space of the states of variable particle number is Fock space:

Fv(H) =
∞

∑
n=0
H⊗n

v

I Free Fock space:

F (H) =
∞

∑
n=0
H⊗n

Evolution Fock Spaces

I Evolution of one particle: unitary operator U.

I Evolution of n particles without mutual interactions: operator U
inH⊗n:

U|ψ1 ⊗ ...⊗ ψn〉 = |Uψ1 ⊗ ...⊗Uψn〉
I Symmetrisation:

U|ψ1, ..., ψn〉v = |Uψ1, ...Uψn〉v.

I Extend to Fock spaces Fv(H) and F (H):

U

(
∞

∑
n=0
|Ψ(n)〉

)
=

∞

∑
n=0

U|Ψ(n)〉

Evolution Fock Spaces

I Evolution of one particle: unitary operator U.
I Evolution of n particles without mutual interactions: operator U

inH⊗n:
U|ψ1 ⊗ ...⊗ ψn〉 = |Uψ1 ⊗ ...⊗Uψn〉

I Symmetrisation:

U|ψ1, ..., ψn〉v = |Uψ1, ...Uψn〉v.

I Extend to Fock spaces Fv(H) and F (H):

U

(
∞

∑
n=0
|Ψ(n)〉

)
=

∞

∑
n=0

U|Ψ(n)〉

Evolution Fock Spaces

I Evolution of one particle: unitary operator U.
I Evolution of n particles without mutual interactions: operator U

inH⊗n:
U|ψ1 ⊗ ...⊗ ψn〉 = |Uψ1 ⊗ ...⊗Uψn〉

I Symmetrisation:

U|ψ1, ..., ψn〉v = |Uψ1, ...Uψn〉v.

I Extend to Fock spaces Fv(H) and F (H):

U

(
∞

∑
n=0
|Ψ(n)〉

)
=

∞

∑
n=0

U|Ψ(n)〉

Evolution Fock Spaces

I Evolution of one particle: unitary operator U.
I Evolution of n particles without mutual interactions: operator U

inH⊗n:
U|ψ1 ⊗ ...⊗ ψn〉 = |Uψ1 ⊗ ...⊗Uψn〉

I Symmetrisation:

U|ψ1, ..., ψn〉v = |Uψ1, ...Uψn〉v.

I Extend to Fock spaces Fv(H) and F (H):

U

(
∞

∑
n=0
|Ψ(n)〉

)
=

∞

∑
n=0

U|Ψ(n)〉

Creation and Annihilation of Particles
I Transitions between states of different particle numbers.

I Creation operator a∗(ψ) in Fv(H):

a∗(ψ)|ψ1, ..., ψn〉v =
√

n + 1|ψ, ψ1, ..., ψn〉v

Add a particle in individual state |ψ〉 to the system of n particles
without modifying their respective states.

I Annihilation operator a(ψ) — Hermitian conjugate of a∗(ψ):

a(ψ)|0〉 = 0,

a(ψ)|ψ1, ..., ψn〉v =
1√

n

n

∑
i=1

(v)i−1〈ψ|ψi〉|ψ1, ..., ψi−1, ψi+1, ..., ψn〉v

Decrease the number of particles by one unit, while preserving
the symmetry of state.

Creation and Annihilation of Particles
I Transitions between states of different particle numbers.
I Creation operator a∗(ψ) in Fv(H):

a∗(ψ)|ψ1, ..., ψn〉v =
√

n + 1|ψ, ψ1, ..., ψn〉v

Add a particle in individual state |ψ〉 to the system of n particles
without modifying their respective states.

I Annihilation operator a(ψ) — Hermitian conjugate of a∗(ψ):

a(ψ)|0〉 = 0,

a(ψ)|ψ1, ..., ψn〉v =
1√

n

n

∑
i=1

(v)i−1〈ψ|ψi〉|ψ1, ..., ψi−1, ψi+1, ..., ψn〉v

Decrease the number of particles by one unit, while preserving
the symmetry of state.

Creation and Annihilation of Particles
I Transitions between states of different particle numbers.
I Creation operator a∗(ψ) in Fv(H):

a∗(ψ)|ψ1, ..., ψn〉v =
√

n + 1|ψ, ψ1, ..., ψn〉v

Add a particle in individual state |ψ〉 to the system of n particles
without modifying their respective states.

I Annihilation operator a(ψ) — Hermitian conjugate of a∗(ψ):

a(ψ)|0〉 = 0,

a(ψ)|ψ1, ..., ψn〉v =
1√

n

n

∑
i=1

(v)i−1〈ψ|ψi〉|ψ1, ..., ψi−1, ψi+1, ..., ψn〉v

Decrease the number of particles by one unit, while preserving
the symmetry of state.

Outline

1. Introduction

2. Quantum Case Statement

3. Syntax of Quantum Recursive Programs

4. Recursive Quantum Walks

5. Second Quantisation

6. Solving Recursive Equations in Free Fock Space

7. Quantum Recursion in Boson and Fermion Fock Spaces

8. Conclusion

Second quantisation provides us with necessary tools for
defining semantics of quantum recursions!

A domain of operators in free Fock space

I H and K— two Hilbert spaces

I F (H) — free Fock space overH.
I O(F (H)⊗K) — the set of all operators of the form

A =
∞

∑
n=0

A(n),

where A(n) is an operator inH⊗n ⊗K.

Second quantisation provides us with necessary tools for
defining semantics of quantum recursions!

A domain of operators in free Fock space

I H and K— two Hilbert spaces
I F (H) — free Fock space overH.

I O(F (H)⊗K) — the set of all operators of the form

A =
∞

∑
n=0

A(n),

where A(n) is an operator inH⊗n ⊗K.

Second quantisation provides us with necessary tools for
defining semantics of quantum recursions!

A domain of operators in free Fock space

I H and K— two Hilbert spaces
I F (H) — free Fock space overH.
I O(F (H)⊗K) — the set of all operators of the form

A =
∞

∑
n=0

A(n),

where A(n) is an operator inH⊗n ⊗K.

Order and Operations on O(F (H)⊗K)
I Flat order: A = ∑∞

n=0 A(n), B = ∑∞
n=0 B(n)

I A v B if and only if

I either for all n ≥ 0, A(n) = B(n), or
I there exists an integer n0 such that A(n) = B(n) for all 0 ≤ n ≤ n0 and

A(n) = 0 for all n > n0.

I Product:

A · B =
∞

∑
n=0

(A(n) · B(n)) .

I Guarded composition:

�i (|i〉 → Ai) =
∞

∑
n=0

(
∑

i
(|i〉〈i| ⊗Ai(n))

)
.

Order and Operations on O(F (H)⊗K)
I Flat order: A = ∑∞

n=0 A(n), B = ∑∞
n=0 B(n)

I A v B if and only if

I either for all n ≥ 0, A(n) = B(n), or
I there exists an integer n0 such that A(n) = B(n) for all 0 ≤ n ≤ n0 and

A(n) = 0 for all n > n0.

I Product:

A · B =
∞

∑
n=0

(A(n) · B(n)) .

I Guarded composition:

�i (|i〉 → Ai) =
∞

∑
n=0

(
∑

i
(|i〉〈i| ⊗Ai(n))

)
.

Order and Operations on O(F (H)⊗K)
I Flat order: A = ∑∞

n=0 A(n), B = ∑∞
n=0 B(n)

I A v B if and only if
I either for all n ≥ 0, A(n) = B(n), or

I there exists an integer n0 such that A(n) = B(n) for all 0 ≤ n ≤ n0 and
A(n) = 0 for all n > n0.

I Product:

A · B =
∞

∑
n=0

(A(n) · B(n)) .

I Guarded composition:

�i (|i〉 → Ai) =
∞

∑
n=0

(
∑

i
(|i〉〈i| ⊗Ai(n))

)
.

Order and Operations on O(F (H)⊗K)
I Flat order: A = ∑∞

n=0 A(n), B = ∑∞
n=0 B(n)

I A v B if and only if
I either for all n ≥ 0, A(n) = B(n), or
I there exists an integer n0 such that A(n) = B(n) for all 0 ≤ n ≤ n0 and

A(n) = 0 for all n > n0.

I Product:

A · B =
∞

∑
n=0

(A(n) · B(n)) .

I Guarded composition:

�i (|i〉 → Ai) =
∞

∑
n=0

(
∑

i
(|i〉〈i| ⊗Ai(n))

)
.

Order and Operations on O(F (H)⊗K)
I Flat order: A = ∑∞

n=0 A(n), B = ∑∞
n=0 B(n)

I A v B if and only if
I either for all n ≥ 0, A(n) = B(n), or
I there exists an integer n0 such that A(n) = B(n) for all 0 ≤ n ≤ n0 and

A(n) = 0 for all n > n0.

I Product:

A · B =
∞

∑
n=0

(A(n) · B(n)) .

I Guarded composition:

�i (|i〉 → Ai) =
∞

∑
n=0

(
∑

i
(|i〉〈i| ⊗Ai(n))

)
.

Order and Operations on O(F (H)⊗K)
I Flat order: A = ∑∞

n=0 A(n), B = ∑∞
n=0 B(n)

I A v B if and only if
I either for all n ≥ 0, A(n) = B(n), or
I there exists an integer n0 such that A(n) = B(n) for all 0 ≤ n ≤ n0 and

A(n) = 0 for all n > n0.

I Product:

A · B =
∞

∑
n=0

(A(n) · B(n)) .

I Guarded composition:

�i (|i〉 → Ai) =
∞

∑
n=0

(
∑

i
(|i〉〈i| ⊗Ai(n))

)
.

Notation
I C — the set of quantum coins inP = P[X1, ..., Xm].

I HC =
⊗

c∈CHc, whereHc is the Hilbert space of coin c.
I The principal system of P is the composition of the systems

denoted by principal variables in P.
I H— the Hilbert space of the principal system.

Notation
I C — the set of quantum coins inP = P[X1, ..., Xm].
I HC =

⊗
c∈CHc, whereHc is the Hilbert space of coin c.

I The principal system of P is the composition of the systems
denoted by principal variables in P.

I H— the Hilbert space of the principal system.

Notation
I C — the set of quantum coins inP = P[X1, ..., Xm].
I HC =

⊗
c∈CHc, whereHc is the Hilbert space of coin c.

I The principal system of P is the composition of the systems
denoted by principal variables in P.

I H— the Hilbert space of the principal system.

Notation
I C — the set of quantum coins inP = P[X1, ..., Xm].
I HC =

⊗
c∈CHc, whereHc is the Hilbert space of coin c.

I The principal system of P is the composition of the systems
denoted by principal variables in P.

I H— the Hilbert space of the principal system.

Semantic functional
Semantic functional of program scheme P:

~P� : O(F (HC)⊗H)m → O(F (HC)⊗H).

For any A1, ..., Am ∈ O(F (HC)⊗H),

~P�(A1, ...,Am)

is inductively defined:
I If P = abort, then ~P�(A1, ..., Am) is the zero operator

A = ∑∞
n=0 A(n) with A(n) = 0 (the zero operator inH⊗n

C ⊗H);

I If P = skip, then ~P�(A1, ..., Am) is the identity operator
A = ∑∞

n=0 A(n) with A(n) = I (the identity operator in
H⊗n

C ⊗H);
I If P = U[q, c], then ~P�(A1, ..., Am) is the cylindrical extension of

U: A = ∑∞
n=0 A(n) with A(n) = U⊗ I1 ⊗ I2 ⊗ I3, where I1 is the

identity operator in the Hilbert space of those coins not in c, I2 is
the identity operator inH⊗(n−1)

C , and I3 is the identity operator
in the Hilbert space of those principal variables not in q;

Semantic functional
Semantic functional of program scheme P:

~P� : O(F (HC)⊗H)m → O(F (HC)⊗H).

For any A1, ..., Am ∈ O(F (HC)⊗H),

~P�(A1, ...,Am)

is inductively defined:
I If P = abort, then ~P�(A1, ..., Am) is the zero operator

A = ∑∞
n=0 A(n) with A(n) = 0 (the zero operator inH⊗n

C ⊗H);
I If P = skip, then ~P�(A1, ..., Am) is the identity operator

A = ∑∞
n=0 A(n) with A(n) = I (the identity operator in

H⊗n
C ⊗H);

I If P = U[q, c], then ~P�(A1, ..., Am) is the cylindrical extension of
U: A = ∑∞

n=0 A(n) with A(n) = U⊗ I1 ⊗ I2 ⊗ I3, where I1 is the
identity operator in the Hilbert space of those coins not in c, I2 is
the identity operator inH⊗(n−1)

C , and I3 is the identity operator
in the Hilbert space of those principal variables not in q;

Semantic functional
Semantic functional of program scheme P:

~P� : O(F (HC)⊗H)m → O(F (HC)⊗H).

For any A1, ..., Am ∈ O(F (HC)⊗H),

~P�(A1, ...,Am)

is inductively defined:
I If P = abort, then ~P�(A1, ..., Am) is the zero operator

A = ∑∞
n=0 A(n) with A(n) = 0 (the zero operator inH⊗n

C ⊗H);
I If P = skip, then ~P�(A1, ..., Am) is the identity operator

A = ∑∞
n=0 A(n) with A(n) = I (the identity operator in

H⊗n
C ⊗H);

I If P = U[q, c], then ~P�(A1, ..., Am) is the cylindrical extension of
U: A = ∑∞

n=0 A(n) with A(n) = U⊗ I1 ⊗ I2 ⊗ I3, where I1 is the
identity operator in the Hilbert space of those coins not in c, I2 is
the identity operator inH⊗(n−1)

C , and I3 is the identity operator
in the Hilbert space of those principal variables not in q;

Semantic functional
I If P = Xj (1 ≤ j ≤ m), then ~P�(A1, ..., Am) = Aj;

If P = P1; P2, then

~P�(A1, ..., Am) = ~P2�(A1, ..., Am) · ~P1�(A1, ..., Am);

If P = qif [c](�i · |i〉 → Pi) fiq, then

~P�(A1, ..., Am) = �i (|i〉 → ~Pi�(A1, ..., Am)) .

Theorem — Continuity of Semantic Functionals
Semantic functional

~P� : (O(F (HC)⊗H)m,v)→ (O(F (HC)⊗H),v)

is continuous.

Creation functional
I Creation functional

C : O(F (HC)⊗H)→ O(F (HC)⊗H)

is defined: for any A = ∑∞
n=0 A(n),

C(A) =
∞

∑
n=0

(I⊗A(n))

where I is the identity operator inHC.

I Intuition — creation functional C moves all coins c0, c1, c2, ... one
position to the right so that ci becomes ci+1 for all i = 0, 1, 2,
Thus, a new position is created at the left end for a new coin c0.

Lemma — Continuity of Creation Functional
Creation functional

C : (O(F (HC)⊗H),v)→ (O(F (HC)⊗H),v)

is continuous.

Creation functional
I Creation functional

C : O(F (HC)⊗H)→ O(F (HC)⊗H)

is defined: for any A = ∑∞
n=0 A(n),

C(A) =
∞

∑
n=0

(I⊗A(n))

where I is the identity operator inHC.
I Intuition — creation functional C moves all coins c0, c1, c2, ... one

position to the right so that ci becomes ci+1 for all i = 0, 1, 2,
Thus, a new position is created at the left end for a new coin c0.

Lemma — Continuity of Creation Functional
Creation functional

C : (O(F (HC)⊗H),v)→ (O(F (HC)⊗H),v)

is continuous.

Corollary
P = P[X1, ..., Xm] a program scheme. Define:

(C⊗m ◦ ~P�)(A1, ..., Am) = ~P�(C(A1), ..., C(Am)).

Then functional

C⊗m ◦ ~P� : (O(F (HC)⊗H)⊗m,v)→ (O(F (HC)⊗H),v)

is continuous.

Notation
I Consider a recursive program P declared by system of recursive

equations:

S :


X1 ⇐ P1,

......
Xm ⇐ Pm,

Corollary
P = P[X1, ..., Xm] a program scheme. Define:

(C⊗m ◦ ~P�)(A1, ..., Am) = ~P�(C(A1), ..., C(Am)).

Then functional

C⊗m ◦ ~P� : (O(F (HC)⊗H)⊗m,v)→ (O(F (HC)⊗H),v)

is continuous.

Notation
I Consider a recursive program P declared by system of recursive

equations:

S :


X1 ⇐ P1,

......
Xm ⇐ Pm,

Notation
I System S of recursive equations induces semantic functional:

~S� : O(F (HC)⊗H)⊗m → O(F (HC)⊗H)m,
~S�(A1, ..., Am) = ((Cm ◦ ~P1�)(A1, ..., Am), ...,

(Cm ◦ ~Pm�)(A1, ..., Am))

I Semantical functional

~S� : (O(F (HC)⊗H)⊗m,v)→ (O(F (HC)⊗H)m,v)

is continuous.

Notation
I System S of recursive equations induces semantic functional:

~S� : O(F (HC)⊗H)⊗m → O(F (HC)⊗H)m,
~S�(A1, ..., Am) = ((Cm ◦ ~P1�)(A1, ..., Am), ...,

(Cm ◦ ~Pm�)(A1, ..., Am))

I Semantical functional

~S� : (O(F (HC)⊗H)⊗m,v)→ (O(F (HC)⊗H)m,v)

is continuous.

Fixed point semantics

I Knaster-Tarski Fixed Point Theorem: ~S� has the least fixed point
µ~S�.

Definition
The fixed point semantics of recursive program P declared by S:

~P�fix = ~P�(A∗1 , ..., A∗m) ∈ O(F (HC)⊗H)

where µ~S� = (A∗1 , ..., A∗m).

Fixed point semantics

I Knaster-Tarski Fixed Point Theorem: ~S� has the least fixed point
µ~S�.

Definition
The fixed point semantics of recursive program P declared by S:

~P�fix = ~P�(A∗1 , ..., A∗m) ∈ O(F (HC)⊗H)

where µ~S� = (A∗1 , ..., A∗m).

Theorem — Equivalence of Denotational Semantics and
Operational Semantics

1. For each k, {~X(n)
k �}

∞
n=0 is an increasing chain and

~X(∞)
k �

4
= lim

n→∞
~X(n)

k � =
∞⊔

n=0
~X(n)

k �

exists in O(F (HC)⊗H).

2. (~X(∞)
1 �, ..., ~X(∞)

m �) = µ~S� is the least fixed point of semantic
functional ~S�.

Theorem — Equivalence of Denotational Semantics and
Operational Semantics

1. For each k, {~X(n)
k �}

∞
n=0 is an increasing chain and

~X(∞)
k �

4
= lim

n→∞
~X(n)

k � =
∞⊔

n=0
~X(n)

k �

exists in O(F (HC)⊗H).

2. (~X(∞)
1 �, ..., ~X(∞)

m �) = µ~S� is the least fixed point of semantic
functional ~S�.

Outline

1. Introduction

2. Quantum Case Statement

3. Syntax of Quantum Recursive Programs

4. Recursive Quantum Walks

5. Second Quantisation

6. Solving Recursive Equations in Free Fock Space

7. Quantum Recursion in Boson and Fermion Fock Spaces

8. Conclusion

Solutions of recursive equations in Boson/Fermion Fock
space

Symmetrisation/anti-symmetrisation of the solutions of recursive
equations in free Fock space!

Principal System Semantics

I Each state |Ψ〉 in Fock space Fv(Hd) induces mapping:

~X, Ψ�p : pure states→ partial density operators inHp

~X, Ψ�p(|ψ〉) = trF (Hd)
(|Φ〉〈Φ|)

where |Φ〉 = ~X�(|Ψ〉 ⊗ |ψ〉)

I Principal system semantics of X with coin initialisation |Ψ〉:
mapping ~X, Ψ�p.

Solutions of recursive equations in Boson/Fermion Fock
space

Symmetrisation/anti-symmetrisation of the solutions of recursive
equations in free Fock space!

Principal System Semantics

I Each state |Ψ〉 in Fock space Fv(Hd) induces mapping:

~X, Ψ�p : pure states→ partial density operators inHp

~X, Ψ�p(|ψ〉) = trF (Hd)
(|Φ〉〈Φ|)

where |Φ〉 = ~X�(|Ψ〉 ⊗ |ψ〉)

I Principal system semantics of X with coin initialisation |Ψ〉:
mapping ~X, Ψ�p.

Example — Recursive Quantum Walk{
X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

I Coherent state of bosons in Boson Fock space F+(H):

|ψ〉coh = exp
(
−1

2
〈ψ|ψ〉

) ∞

∑
n=0

[a∗(ψ)]n

n!
|0〉

I The walk starts from position 0 and the coins are initialised in
the coherent states of bosons corresponding to |L〉:

~X, Lcoh�p(|0〉) =
1√

e

(
∞

∑
k=0

1
22k+1 | − 1〉〈−1|+

∞

∑
k=0

1
22k+2 |2〉〈2|

)

=
1√

e

(
2
3
| − 1〉〈−1|+ 1

3
|2〉〈2|

)
.

Example — Recursive Quantum Walk{
X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

I Coherent state of bosons in Boson Fock space F+(H):

|ψ〉coh = exp
(
−1

2
〈ψ|ψ〉

) ∞

∑
n=0

[a∗(ψ)]n

n!
|0〉

I The walk starts from position 0 and the coins are initialised in
the coherent states of bosons corresponding to |L〉:

~X, Lcoh�p(|0〉) =
1√

e

(
∞

∑
k=0

1
22k+1 | − 1〉〈−1|+

∞

∑
k=0

1
22k+2 |2〉〈2|

)

=
1√

e

(
2
3
| − 1〉〈−1|+ 1

3
|2〉〈2|

)
.

Outline

1. Introduction

2. Quantum Case Statement

3. Syntax of Quantum Recursive Programs

4. Recursive Quantum Walks

5. Second Quantisation

6. Solving Recursive Equations in Free Fock Space

7. Quantum Recursion in Boson and Fermion Fock Spaces

8. Conclusion

Problems:
I What kind of problems can be solved more conveniently by

using quantum recursion?

I Hoare logic for quantum while-loops defined using quantum
coins?

I Hoare logic for quantum while-programs with classical controls
[Ying, TOPLAS’2011]

I What kind of physical systems can be used to implement
quantum recursion?

Problems:
I What kind of problems can be solved more conveniently by

using quantum recursion?
I Hoare logic for quantum while-loops defined using quantum

coins?

I Hoare logic for quantum while-programs with classical controls
[Ying, TOPLAS’2011]

I What kind of physical systems can be used to implement
quantum recursion?

Problems:
I What kind of problems can be solved more conveniently by

using quantum recursion?
I Hoare logic for quantum while-loops defined using quantum

coins?
I Hoare logic for quantum while-programs with classical controls

[Ying, TOPLAS’2011]

I What kind of physical systems can be used to implement
quantum recursion?

Problems:
I What kind of problems can be solved more conveniently by

using quantum recursion?
I Hoare logic for quantum while-loops defined using quantum

coins?
I Hoare logic for quantum while-programs with classical controls

[Ying, TOPLAS’2011]
I What kind of physical systems can be used to implement

quantum recursion?

Thank You!

	1. Introduction
	2. Quantum Case Statement
	3. Syntax of Quantum Recursive Programs
	4. Recursive Quantum Walks
	5. Second Quantisation
	6. Solving Recursive Equations in Free Fock Space
	7. Quantum Recursion in Boson and Fermion Fock Spaces
	8. Conclusion

