Quantum Recursion and Second Quantisation

Mingsheng Ying

University of Technology Sydney, Australia and Tsinghua University, China

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Outline

- 1. Introduction
- 2. Quantum Case Statement
- 3. Syntax of Quantum Recursive Programs
- 4. Recursive Quantum Walks
- 5. Second Quantisation
- 6. Solving Recursive Equations in Free Fock Space
- 7. Quantum Recursion in Boson and Fermion Fock Spaces

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

8. Conclusion

Outline

1. Introduction

- 2. Quantum Case Statement
- 3. Syntax of Quantum Recursive Programs
- 4. Recursive Quantum Walks
- 5. Second Quantisation
- 6. Solving Recursive Equations in Free Fock Space
- 7. Quantum Recursion in Boson and Fermion Fock Spaces

8. Conclusion

Classical Recursion of Quantum Programs

 Recursive procedure in quantum programming language QPL [Selinger, Mathematical Structures in Computer Science'2004].

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quantum while-loops [Ying, Feng, Acta Informatica'2010].

Classical Recursion of Quantum Programs

- Recursive procedure in quantum programming language QPL [Selinger, Mathematical Structures in Computer Science'2004].
- Quantum while-loops [Ying, Feng, Acta Informatica'2010].
- "Quantum data, classical control" [Selinger]:

The control flow of quantum recursions is classical: branchings are determined by the outcomes of quantum measurements.

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Classical Recursion of Quantum Programs

- Recursive procedure in quantum programming language QPL [Selinger, Mathematical Structures in Computer Science'2004].
- Quantum while-loops [Ying, Feng, Acta Informatica'2010].
- "Quantum data, classical control" [Selinger]:

The control flow of quantum recursions is classical: branchings are determined by the outcomes of quantum measurements.

• Example:

while
$$M[\overline{q}] = 1$$
 do S od

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Outline

1. Introduction

- 2. Quantum Case Statement
- 3. Syntax of Quantum Recursive Programs
- 4. Recursive Quantum Walks
- 5. Second Quantisation
- 6. Solving Recursive Equations in Free Fock Space
- 7. Quantum Recursion in Boson and Fermion Fock Spaces

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

8. Conclusion

 "Quantum data, quantum control" [Altenkirch and Grattage, LICS'2005]

- "Quantum data, quantum control" [Altenkirch and Grattage, LICS'2005]
- "Coined" quantum case statement [Ying, Foundations of Quantum Programming, Morgan Kaufmann 2016]

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quantum Case Statement

- "Quantum data, quantum control" [Altenkirch and Grattage, LICS'2005]
- "Coined" quantum case statement [Ying, Foundations of Quantum Programming, Morgan Kaufmann 2016]

Quantum Case Statement

Classical Case Statement:

if b then S_1 else S_2 fi

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- "Quantum data, quantum control" [Altenkirch and Grattage, LICS'2005]
- "Coined" quantum case statement [Ying, Foundations of Quantum Programming, Morgan Kaufmann 2016]

Quantum Case Statement

Classical Case Statement:

if b then S_1 else S_2 fi

Classical Case Statement in Quantum Programming:

$$\mathbf{if} \, M[\overline{q}] = 0 \to S_1$$
$$\Box \quad 1 \to S_2$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

fi

• Introduce external quantum coin *c*: $\mathcal{H}_c = \text{span}\{|0\rangle, |1\rangle\}$

(ロト・日本)・モン・モン・モー のへで

• Introduce external quantum coin *c*: $\mathcal{H}_c = \text{span}\{|0\rangle, |1\rangle\}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

• U_0, U_1 unitary operators on quantum system $q: \mathcal{H}_q$

- Introduce external quantum coin *c*: $\mathcal{H}_c = \text{span}\{|0\rangle, |1\rangle\}$
- U_0, U_1 unitary operators on quantum system $q: \mathcal{H}_q$
- Quantum case statement employing coin c:

- Introduce external quantum coin *c*: $\mathcal{H}_c = \text{span}\{|0\rangle, |1\rangle\}$
- U_0, U_1 unitary operators on quantum system $q: \mathcal{H}_q$
- Quantum case statement employing coin c:

Semantics: unitary operator U in $\mathcal{H}_c \otimes \mathcal{H}_q$:

$$|U|0,\psi
angle=|0
angle U_0|\psi
angle, \quad U|1,\psi
angle=|1
angle U_1|\psi
angle$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quantum Choice

• *V* a unitary operator in \mathcal{H}_c .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Quantum Choice

- *V* a unitary operator in \mathcal{H}_c .
- *Quantum choice* of $U_0[q]$, $U_1[q]$ with coin-tossing V[c]:

$$U_0[q] \oplus_{V[c]} U_1[q] \stackrel{\text{def}}{=} V[c]; \operatorname{\mathbf{qif}} [c] |0\rangle \to U_0[q]$$

 $\square |1\rangle \to U_1[q]$
fiq

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

 Superpositions of time evolutions of a quantum system [Aharonov, Anandan, Popescu, Vaidman, *Plysical Review Letters* 1990].

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Superpositions of time evolutions of a quantum system [Aharonov, Anandan, Popescu, Vaidman, *Plysical Review Letters* 1990].
- Quantum walks [Ambainis, Bach, Nayak, Vishwanath, Watrous, STOC'2001; Aharonov, Ambainis, Kempe, Vazirani, STOC'2001].

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quantum walk

- Superpositions of time evolutions of a quantum system [Aharonov, Anandan, Popescu, Vaidman, *Plysical Review Letters* 1990].
- Quantum walks [Ambainis, Bach, Nayak, Vishwanath, Watrous, STOC'2001; Aharonov, Ambainis, Kempe, Vazirani, STOC'2001].

Quantum walk

► One-dimensional random walk - a particle moves on a line marked by integers Z; at each step it moves one position left or right, depending on the flip of a fair coin.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Superpositions of time evolutions of a quantum system [Aharonov, Anandan, Popescu, Vaidman, *Plysical Review Letters* 1990].
- Quantum walks [Ambainis, Bach, Nayak, Vishwanath, Watrous, STOC'2001; Aharonov, Ambainis, Kempe, Vazirani, STOC'2001].

Quantum walk

► One-dimensional random walk - a particle moves on a line marked by integers Z; at each step it moves one position left or right, depending on the flip of a fair coin.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Hadamard walk - a quantum variant.

• Hilbert space $\mathcal{H}_d \otimes \mathcal{H}_p$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- Hilbert space $\mathcal{H}_d \otimes \mathcal{H}_p$.
- $\mathcal{H}_d = \operatorname{span}\{|L\rangle, |R\rangle\}, L, R$ direction Left and Right.

- Hilbert space $\mathcal{H}_d \otimes \mathcal{H}_p$.
- $\mathcal{H}_d = \operatorname{span}\{|L\rangle, |R\rangle\}, L, R$ direction Left and Right.
- $\mathcal{H}_p = \operatorname{span}\{|n\rangle : n \in \mathbb{Z}\}, n$ the position marked by integer n.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Hilbert space $\mathcal{H}_d \otimes \mathcal{H}_p$.
- $\mathcal{H}_d = \operatorname{span}\{|L\rangle, |R\rangle\}, L, R$ direction Left and Right.
- $\mathcal{H}_p = \operatorname{span}\{|n\rangle : n \in \mathbb{Z}\}, n$ the position marked by integer n.
- One step of Hadamard walk:

$$W = T(H \otimes I)$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Hilbert space $\mathcal{H}_d \otimes \mathcal{H}_p$.
- $\mathcal{H}_d = \operatorname{span}\{|L\rangle, |R\rangle\}, L, R$ direction Left and Right.
- $\mathcal{H}_p = \operatorname{span}\{|n\rangle : n \in \mathbb{Z}\}, n$ the position marked by integer n.
- One step of Hadamard walk:

$$W = T(H \otimes I)$$

• Translation *T*: unitary operator in $\mathcal{H}_d \otimes \mathcal{H}_p$

$$T|L,n\rangle = |L,n-1\rangle, \quad T|R,n\rangle = |R,n+1\rangle$$

- Hilbert space $\mathcal{H}_d \otimes \mathcal{H}_p$.
- $\mathcal{H}_d = \operatorname{span}\{|L\rangle, |R\rangle\}, L, R$ direction Left and Right.
- $\mathcal{H}_p = \operatorname{span}\{|n\rangle : n \in \mathbb{Z}\}, n$ the position marked by integer n.
- One step of Hadamard walk:

$$W = T(H \otimes I)$$

• Translation *T*: unitary operator in $\mathcal{H}_d \otimes \mathcal{H}_p$

$$T|L,n\rangle = |L,n-1\rangle, \quad T|R,n\rangle = |R,n+1\rangle$$

• Hadamard transform \mathcal{H}_d :

$$H = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1\\ 1 & -1 \end{array} \right)$$

- Hilbert space $\mathcal{H}_d \otimes \mathcal{H}_p$.
- $\mathcal{H}_d = \operatorname{span}\{|L\rangle, |R\rangle\}, L, R$ direction Left and Right.
- $\mathcal{H}_p = \operatorname{span}\{|n\rangle : n \in \mathbb{Z}\}, n$ the position marked by integer n.
- One step of Hadamard walk:

$$W = T(H \otimes I)$$

• Translation *T*: unitary operator in $\mathcal{H}_d \otimes \mathcal{H}_p$

$$T|L,n\rangle = |L,n-1\rangle, \quad T|R,n\rangle = |R,n+1\rangle$$

• Hadamard transform \mathcal{H}_d :

$$H = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hadamard walk — repeated applications of operator W.

Look quantum walk in a new way!

• Define left and right translation T_L and T_R in space \mathcal{H}_p :

$$T_L|n\rangle = |n-1\rangle, \quad T_R|n\rangle = |n+1\rangle$$

Look quantum walk in a new way!

• Define left and right translation T_L and T_R in space \mathcal{H}_p :

$$T_L|n\rangle = |n-1\rangle, \quad T_R|n\rangle = |n+1\rangle$$

► Translation operator *T* is a quantum case statement:

$$T = \mathbf{qif} [d] |L\rangle \to T_L[p]$$

 $\Box |R\rangle \to T_R[p]$
fiq

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

Look quantum walk in a new way!

• Define left and right translation T_L and T_R in space \mathcal{H}_p :

$$T_L|n\rangle = |n-1\rangle, \quad T_R|n\rangle = |n+1\rangle$$

► Translation operator *T* is a quantum case statement:

$$T = \mathbf{qif} [d] |L\rangle \to T_L[p]$$
$$\Box |R\rangle \to T_R[p]$$
fiq

Single-step walk operator W is a quantum choice:

 $T_L[p] \oplus_{H[d]} T_R[p]$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Outline

1. Introduction

- 2. Quantum Case Statement
- 3. Syntax of Quantum Recursive Programs
- 4. Recursive Quantum Walks
- 5. Second Quantisation
- 6. Solving Recursive Equations in Free Fock Space
- 7. Quantum Recursion in Boson and Fermion Fock Spaces

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

8. Conclusion

Quantum recursion with quantum control flow can be defined based on quantum case statement

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Quantum recursion with quantum control flow can be defined based on quantum case statement

A Quantum Programming Language

Alphabet:

- Two sets of quantum variables:
 - 1. principal system variables *p*, *q*, ...;

Quantum recursion with quantum control flow can be defined based on quantum case statement

A Quantum Programming Language

Alphabet:

- Two sets of quantum variables:
 - 1. principal system variables *p*,*q*,...;
 - 2. coin variables *c*, *d*,

Syntax

 $P ::= X \mid \textbf{abort} \mid \textbf{skip} \mid U[\overline{q}, \overline{c}] \mid P_1; P_2 \mid \textbf{qif} \ [c](\Box i \cdot |i\rangle \rightarrow P_i) \ \textbf{fiq}$
Quantum recursion with quantum control flow can be defined based on quantum case statement

A Quantum Programming Language

Alphabet:

- Two sets of quantum variables:
 - 1. principal system variables *p*,*q*,...;
 - 2. coin variables *c*, *d*,
- ► A set of procedure identifiers *X*, *X*₁, *X*₂,

Syntax

 $P ::= X \mid \textbf{abort} \mid \textbf{skip} \mid U[\overline{q}, \overline{c}] \mid P_1; P_2 \mid \textbf{qif} \ [c](\Box i \cdot |i\rangle \rightarrow P_i) \ \textbf{fiq}$

Quantum choice

$$[P(c)] \bigoplus_i (|i\rangle \to P_i) \stackrel{\triangle}{=} P; \mathbf{qif} [c] (\Box i \cdot |i\rangle \to P_i) \ \mathbf{end}.$$

Quantum choice

$$[P(c)] \bigoplus_i (|i\rangle \to P_i) \stackrel{\triangle}{=} P; \mathbf{qif} [c] (\Box i \cdot |i\rangle \to P_i) \text{ end.}$$

"Superposition of Programs"

Quantum choice first runs a coin-tossing subprogram *P* followed by an alternation of a family of subprograms *P*₀, *P*₁,

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Coin-tossing subprogram *P* creates a superposition of the execution paths of *P*₀, *P*₁, ...,

Quantum choice

$$[P(c)] \bigoplus_i (|i\rangle \to P_i) \stackrel{\triangle}{=} P; \mathbf{qif} [c] (\Box i \cdot |i\rangle \to P_i) \text{ end.}$$

"Superposition of Programs"

- Quantum choice first runs a coin-tossing subprogram *P* followed by an alternation of a family of subprograms *P*₀, *P*₁,
- Coin-tossing subprogram *P* creates a superposition of the execution paths of *P*₀, *P*₁, ...,
- During the execution of the alternation, each P_i is running along its own path, but the whole program is executed in a superposition of execution paths of P₀, P₁,

◆□▶ ◆■▶ ◆ ■▶ ◆ ■▶ ○ ■ ○ ○ ○ ○

• \mathcal{H} — Hilbert space of the principal system.

- ► *H* Hilbert space of the principal system.
- ▶ Semantics **[***P***]** of a program *P* without procedure identifiers:

- コン・4回シュービン・4回シューレー

- ► *H* Hilbert space of the principal system.
- ▶ Semantics **[***P***]** of a program *P* without procedure identifiers:

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

1. If P = abort, then $\llbracket P \rrbracket = 0$ (the zero operator in \mathcal{H});

- ► *H* Hilbert space of the principal system.
- ▶ Semantics **[***P***]** of a program *P* without procedure identifiers:

- 1. If P = abort, then $\llbracket P \rrbracket = 0$ (the zero operator in \mathcal{H});
- 2. If $P = \mathbf{skip}$, then $\llbracket P \rrbracket = I$ (the identity operator in \mathcal{H});

- ► *H* Hilbert space of the principal system.
- ▶ Semantics **[***P***]** of a program *P* without procedure identifiers:

- 1. If P =**abort**, then $\llbracket P \rrbracket = 0$ (the zero operator in \mathcal{H});
- 2. If $P = \mathbf{skip}$, then $\llbracket P \rrbracket = I$ (the identity operator in \mathcal{H});

3. If
$$P = U[\overline{q}, \overline{c}]$$
, then $\llbracket P \rrbracket = U$;

- ► *H* Hilbert space of the principal system.
- ▶ Semantics **[***P***]** of a program *P* without procedure identifiers:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. If P =**abort**, then $\llbracket P \rrbracket = 0$ (the zero operator in \mathcal{H});
- 2. If $P = \mathbf{skip}$, then $\llbracket P \rrbracket = I$ (the identity operator in \mathcal{H});

3. If
$$P = U[\overline{q}, \overline{c}]$$
, then $\llbracket P \rrbracket = U$;

4. If $P = P_1; P_2$, then $\llbracket P \rrbracket = \llbracket P_2 \rrbracket \cdot \llbracket P_1 \rrbracket;$

- ► *H* Hilbert space of the principal system.
- ▶ Semantics **[***P***]** of a program *P* without procedure identifiers:
 - 1. If P = abort, then $\llbracket P \rrbracket = 0$ (the zero operator in \mathcal{H});
 - 2. If $P = \mathbf{skip}$, then $\llbracket P \rrbracket = I$ (the identity operator in \mathcal{H});

3. If
$$P = U[\overline{q}, \overline{c}]$$
, then $\llbracket P \rrbracket = U$;

4. If
$$P = P_1; P_2$$
, then $[\![P]\!] = [\![P_2]\!] \cdot [\![P_1]\!]$;

5. If $P = \operatorname{qif} [c](\Box i \cdot |i\rangle \to P_i)$ fiq, then

$$\llbracket P \rrbracket = \Box_i (|i\rangle \to \llbracket P_i \rrbracket) = \sum_i (|i\rangle \langle i| \otimes \llbracket P_i \rrbracket).$$

Quantum recursive programs

► Let X₁, ..., X_m be different procedure identifiers. A declaration for X₁, ..., X_m is a system of equations:

$$S: \begin{cases} X_1 \Leftarrow P_1, \\ \dots \\ X_m \Leftarrow P_m, \end{cases}$$

where $P_i = P_i[X_1, ..., X_m]$ contains at most procedure identifiers $X_1, ..., X_m$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Quantum recursive programs

► Let *X*₁, ..., *X*_m be different procedure identifiers. A declaration for *X*₁, ..., *X*_m is a system of equations:

$$S: \begin{cases} X_1 \Leftarrow P_1, \\ \dots \\ X_m \Leftarrow P_m, \end{cases}$$

where $P_i = P_i[X_1, ..., X_m]$ contains at most procedure identifiers $X_1, ..., X_m$.

► A recursive program consists of a main statement P = P[X₁,..., X_m] and a declaration S for X₁,..., X_m.

Question: How to define semantics of quantum recursive programs?

Outline

1. Introduction

- 2. Quantum Case Statement
- 3. Syntax of Quantum Recursive Programs
- 4. Recursive Quantum Walks
- 5. Second Quantisation
- 6. Solving Recursive Equations in Free Fock Space
- 7. Quantum Recursion in Boson and Fermion Fock Spaces

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

8. Conclusion

• The walk first runs coin-tossing operator *H*[*d*], and then a quantum case statement:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- The walk first runs coin-tossing operator *H*[*d*], and then a quantum case statement:
 - if coin *d* is in state $|L\rangle$ then the walker moves one position left;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

- ► The walk first runs coin-tossing operator *H*[*d*], and then a quantum case statement:
 - if coin *d* is in state $|L\rangle$ then the walker moves one position left;
 - if *d* is in state |*R*⟩ then it moves one position right, followed by a procedure behaving as the recursive walk itself.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► The walk first runs coin-tossing operator *H*[*d*], and then a quantum case statement:
 - if coin *d* is in state $|L\rangle$ then the walker moves one position left;
 - if *d* is in state |*R*⟩ then it moves one position right, followed by a procedure behaving as the recursive walk itself.
- Program X declared by recursive equation:

$$X \Leftarrow T_L[p] \oplus_{H[d]} (T_R[p]; X)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• The walk first runs coin-tossing operator *H*[*d*] and then a quantum case statement:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- The walk first runs coin-tossing operator *H*[*d*] and then a quantum case statement:
 - if coin *d* is in state |L> then the walker moves one position left, followed by a procedure behaving as the recursive walk itself;

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The walk first runs coin-tossing operator *H*[*d*] and then a quantum case statement:
 - if coin *d* is in state |*L*⟩ then the walker moves one position left, followed by a procedure behaving as the recursive walk itself;
 - if *d* is in state |*R*⟩ then it moves one position right, also followed by a procedure behaving as the recursive walk itself.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- The walk first runs coin-tossing operator *H*[*d*] and then a quantum case statement:
 - if coin *d* is in state |L⟩ then the walker moves one position left, followed by a procedure behaving as the recursive walk itself;
 - if *d* is in state |*R*⟩ then it moves one position right, also followed by a procedure behaving as the recursive walk itself.
- Program X declared by the recursive equation:

$$X \leftarrow (T_L[p]; X) \oplus_{H[d]} (T_R[p]; X)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- The walk first runs coin-tossing operator *H*[*d*] and then a quantum case statement:
 - if coin *d* is in state |L⟩ then the walker moves one position left, followed by a procedure behaving as the recursive walk itself;
 - if *d* is in state |*R*⟩ then it moves one position right, also followed by a procedure behaving as the recursive walk itself.
- Program X declared by the recursive equation:

$$X \Leftarrow (T_L[p]; X) \oplus_{H[d]} (T_R[p]; X)$$

• A variant declared by system of recursive equations:

$$\begin{cases} X \Leftarrow T_L[p] \oplus_{H[d]} (T_R[p]; Y), \\ Y \Leftarrow (T_L[p]; X) \oplus_{H[d]} T_R[p] \end{cases}$$

More Interesting Recursive Hardamard Walk

• Let $n \ge 2$. Program declared by recursive equation:

$$X \leftarrow ((T_L[p]; X) \oplus_{H[d]} (T_R[p]; X)); (T_L[p] \oplus_{H[d]} T_R[p])^n$$

$$\begin{split} (X,|L\rangle_d|0\rangle_p) &\to \dots \\ &\to \frac{1}{2\sqrt{2}} [(X,|L\rangle_d|-3\rangle_p) + (X,|R\rangle_d|-1\rangle_p) \\ &\quad + (X,|L\rangle_d|-1\rangle_p) - (X,|R\rangle_d|1\rangle_p) \\ &\quad + (X,|L\rangle_d|-1\rangle_p) + (X,|R\rangle_d|1\rangle_p) \\ &\quad - (X,|L\rangle_d|1\rangle_p) + (X,|R\rangle_d|3\rangle_p)] \end{split}$$

◆□▶ ◆■▶ ◆ ■▶ ◆ ■▶ ○ ■ ○ ○ ○ ○

More Interesting Recursive Hardamard Walk

• Let $n \ge 2$. Program declared by recursive equation:

$$X \leftarrow ((T_L[p]; X) \oplus_{H[d]} (T_R[p]; X)); (T_L[p] \oplus_{H[d]} T_R[p])^n$$

$$\begin{split} (X,|L\rangle_d|0\rangle_p) &\to \dots \\ &\to \frac{1}{2\sqrt{2}} [(X,|L\rangle_d|-3\rangle_p) + (X,|R\rangle_d|-1\rangle_p) \\ &\quad + (X,|L\rangle_d|-1\rangle_p) - (X,|R\rangle_d|1\rangle_p) \\ &\quad + (X,|L\rangle_d|-1\rangle_p) + (X,|R\rangle_d|1\rangle_p) \\ &\quad - (X,|L\rangle_d|1\rangle_p) + (X,|R\rangle_d|3\rangle_p)] \end{split}$$

• Configurations $-(X, |R\rangle_d |1\rangle_p)$ and $(X, |R\rangle_d |1\rangle_p)$ cancel one another.

Question: how to solve quantum recursive equations?

Syntactic Approximation

Recursive program X declared by equation

 $X \Leftarrow F(X)$

Syntactic Approximation

Recursive program X declared by equation

 $X \Leftarrow F(X)$

Syntactic approximations:

$$\begin{cases} X^{(0)} = \mathbf{Abort}, \\ X^{(n+1)} = F[X^{(n)}/X] \text{ for } n \ge 0. \end{cases}$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

 $X^{(n)}$ is the *n*th syntactic approximation of *X*.

Syntactic Approximation

Recursive program X declared by equation

 $X \Leftarrow F(X)$

Syntactic approximations:

$$\begin{cases} X^{(0)} = Abort, \\ X^{(n+1)} = F[X^{(n)} / X] \text{ for } n \ge 0. \end{cases}$$

 $X^{(n)}$ is the *n*th syntactic approximation of *X*.

Semantics **[***X***]** of *X* is the limit:

$$[X] = \lim_{n \to \infty} [X^{(n)}]$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\begin{split} X^{(0)} &= \text{abort,} \\ X^{(1)} &= T_L[p] \oplus_{H[d]} (T_R[p]; \text{abort}), \\ X^{(2)} &= T_L[p] \oplus_{H[d]} (T_R[p]; T_L[p] \oplus_{H[d_1]} (T_R[p]; \text{abort})), \\ X^{(3)} &= T_L[p] \oplus_{H[d]} (T_R[p]; T_L[p] \oplus_{H[d_1]} (T_R[p]; T_L[p] \oplus_{H[d_2]} (T_R[p]; \text{abort}))), \\ &\dots \dots \dots \end{split}$$

$$\begin{split} X^{(0)} &= \text{abort,} \\ X^{(1)} &= T_L[p] \oplus_{H[d]} (T_R[p]; \text{abort}), \\ X^{(2)} &= T_L[p] \oplus_{H[d]} (T_R[p]; T_L[p] \oplus_{H[d_1]} (T_R[p]; \text{abort})), \\ X^{(3)} &= T_L[p] \oplus_{H[d]} (T_R[p]; T_L[p] \oplus_{H[d_1]} (T_R[p]; T_L[p] \oplus_{H[d_2]} (T_R[p]; \text{abort}))), \\ \dots \dots \dots \end{split}$$

Observation

Continuously introduce new "coin" to avoid variable conflict.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

► Variables *d*, *d*₁, *d*₂, ... denote identical particles.

$$\begin{split} X^{(0)} &= \text{abort,} \\ X^{(1)} &= T_L[p] \oplus_{H[d]} (T_R[p]; \text{abort}), \\ X^{(2)} &= T_L[p] \oplus_{H[d]} (T_R[p]; T_L[p] \oplus_{H[d_1]} (T_R[p]; \text{abort})), \\ X^{(3)} &= T_L[p] \oplus_{H[d]} (T_R[p]; T_L[p] \oplus_{H[d_1]} (T_R[p]; T_L[p] \oplus_{H[d_2]} (T_R[p]; \text{abort}))), \\ \dots \dots \dots \end{split}$$

Observation

- Continuously introduce new "coin" to avoid variable conflict.
- ► Variables *d*, *d*₁, *d*₂, ... denote identical particles.
- The number of coin particles needed in running recursive walk is unknown beforehand.

- コン・4回シュービン・4回シューレー

$$\begin{split} X^{(0)} &= \text{abort,} \\ X^{(1)} &= T_L[p] \oplus_{H[d]} (T_R[p]; \text{abort}), \\ X^{(2)} &= T_L[p] \oplus_{H[d]} (T_R[p]; T_L[p] \oplus_{H[d_1]} (T_R[p]; \text{abort})), \\ X^{(3)} &= T_L[p] \oplus_{H[d]} (T_R[p]; T_L[p] \oplus_{H[d_1]} (T_R[p]; T_L[p] \oplus_{H[d_2]} (T_R[p]; \text{abort}))), \\ \dots \dots \dots \end{split}$$

Observation

- Continuously introduce new "coin" to avoid variable conflict.
- ▶ Variables *d*, *d*₁, *d*₂, ... denote identical particles.
- The number of coin particles needed in running recursive walk is unknown beforehand.
- We need to deal with *quantum systems where the number of particles of the same type may vary.*

Outline

- 1. Introduction
- 2. Quantum Case Statement
- 3. Syntax of Quantum Recursive Programs
- 4. Recursive Quantum Walks
- 5. Second Quantisation
- 6. Solving Recursive Equations in Free Fock Space
- 7. Quantum Recursion in Boson and Fermion Fock Spaces

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

8. Conclusion

Fock Spaces

The principle of symmetrisation: the states of n identical particles are either completely symmetric or completely antisymmetric with respect to the permutations of the particles.
[bosons - symmetric; fermions - antisymmetric]

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Fock Spaces

The principle of symmetrisation: the states of *n* identical particles are either completely symmetric or completely antisymmetric with respect to the permutations of the particles. [bosons - *symmetric*; fermions - *antisymmetric*]

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► *H* — the Hilbert space of one particle.

Fock Spaces

- The principle of symmetrisation: the states of n identical particles are either completely symmetric or completely antisymmetric with respect to the permutations of the particles. [bosons symmetric; fermions antisymmetric]
- \mathcal{H} the Hilbert space of one particle.
- For each permutation π of 1, ..., *n*, define operator P_{π} in $\mathcal{H}^{\otimes n}$:

$$P_{\pi}|\psi_1\otimes...\otimes\psi_n\rangle=|\psi_{\pi(1)}\otimes...\otimes\psi_{\pi(n)}\rangle$$
- The principle of symmetrisation: the states of n identical particles are either completely symmetric or completely antisymmetric with respect to the permutations of the particles. [bosons symmetric; fermions antisymmetric]
- ► *H* the Hilbert space of one particle.
- For each permutation π of 1, ..., *n*, define operator P_{π} in $\mathcal{H}^{\otimes n}$:

$$P_{\pi}|\psi_{1}\otimes...\otimes\psi_{n}\rangle=|\psi_{\pi(1)}\otimes...\otimes\psi_{\pi(n)}\rangle$$

▶ Define symmetrisation and antisymmetrisation operators in *H*^{⊗n}:

$$S_{+} = rac{1}{n!} \sum_{\pi} P_{\pi}, \quad S_{-} = rac{1}{n!} \sum_{\pi} (-1)^{\pi} P_{\pi}$$

v = + for bosons, v = - for fermions.

Write

$$|\psi_1,...,\psi_n
angle_v=S_v|\psi_1\otimes...\otimes\psi_n
angle.$$

v = + for bosons, v = - for fermions.

Write

$$|\psi_1,...,\psi_n
angle_v=S_v|\psi_1\otimes...\otimes\psi_n
angle.$$

• State spaces of *n* bosons and fermions:

 $\mathcal{H}_{v}^{\otimes n} = S_{v}\mathcal{H}^{\otimes n} = \operatorname{span}\{|\psi_{1},...,\psi_{n}\rangle_{v}: |\psi_{1}\rangle,...,|\psi_{n}\rangle \text{ are in } \mathcal{H}\}$

v = + for bosons, v = - for fermions.

Write

$$|\psi_1,...,\psi_n
angle_v=S_v|\psi_1\otimes...\otimes\psi_n
angle.$$

• State spaces of *n* bosons and fermions:

 $\mathcal{H}_{v}^{\otimes n} = S_{v}\mathcal{H}^{\otimes n} = \operatorname{span}\{|\psi_{1},...,\psi_{n}\rangle_{v}:|\psi_{1}\rangle,...,|\psi_{n}\rangle \text{ are in }\mathcal{H}\}$

• Vacuum state $|\mathbf{0}\rangle$

$$\mathcal{H}_{v}^{\otimes 0}=\mathcal{H}^{\otimes 0}=\text{span}\{|\mathbf{0}\rangle\}$$

v = + for bosons, v = - for fermions.

Write

$$|\psi_1,...,\psi_n
angle_v=S_v|\psi_1\otimes...\otimes\psi_n
angle.$$

• State spaces of *n* bosons and fermions:

$$\mathcal{H}_v^{\otimes n} = S_v \mathcal{H}^{\otimes n} = \operatorname{span}\{|\psi_1, ..., \psi_n\rangle_v : |\psi_1\rangle, ..., |\psi_n\rangle \text{ are in } \mathcal{H}\}$$

• Vacuum state $|\mathbf{0}\rangle$

$$\mathcal{H}_v^{\otimes 0} = \mathcal{H}^{\otimes 0} = \operatorname{span}\{|\mathbf{0}\rangle\}$$

Space of the states of variable particle number is Fock space:

$$\mathcal{F}_v(\mathcal{H}) = \sum_{n=0}^{\infty} \mathcal{H}_v^{\otimes n}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

v = + for bosons, v = - for fermions.

Write

$$|\psi_1,...,\psi_n
angle_v=S_v|\psi_1\otimes...\otimes\psi_n
angle.$$

• State spaces of *n* bosons and fermions:

$$\mathcal{H}_v^{\otimes n} = S_v \mathcal{H}^{\otimes n} = \operatorname{span}\{|\psi_1, ..., \psi_n\rangle_v : |\psi_1\rangle, ..., |\psi_n\rangle \text{ are in } \mathcal{H}\}$$

• Vacuum state $|\mathbf{0}\rangle$

$$\mathcal{H}_{v}^{\otimes 0} = \mathcal{H}^{\otimes 0} = \operatorname{span}\{|\mathbf{0}\rangle\}$$

Space of the states of variable particle number is Fock space:

$$\mathcal{F}_v(\mathcal{H}) = \sum_{n=0}^{\infty} \mathcal{H}_v^{\otimes n}$$

Free Fock space:

$$\mathcal{F}(\mathcal{H}) = \sum_{n=0}^{\infty} \mathcal{H}^{\otimes n}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Evolution of one particle: unitary operator *U*.

- Evolution of one particle: unitary operator *U*.
- ► Evolution of *n* particles without mutual interactions: operator U in H^{⊗n}:

$$\mathbf{U}|\psi_1\otimes...\otimes\psi_n\rangle=|U\psi_1\otimes...\otimes U\psi_n\rangle$$

- Evolution of one particle: unitary operator *U*.
- ► Evolution of *n* particles without mutual interactions: operator U in H^{⊗n}:

$$\mathbf{U}|\psi_1\otimes...\otimes\psi_n\rangle=|U\psi_1\otimes...\otimes U\psi_n\rangle$$

Symmetrisation:

$$\mathbf{U}|\psi_1,...,\psi_n\rangle_v=|U\psi_1,...U\psi_n\rangle_v.$$

- Evolution of one particle: unitary operator *U*.
- ► Evolution of *n* particles without mutual interactions: operator U in H^{⊗n}:

$$\mathbf{U}|\psi_1\otimes...\otimes\psi_n\rangle=|U\psi_1\otimes...\otimes U\psi_n\rangle$$

Symmetrisation:

$$\mathbf{U}|\psi_1,...,\psi_n\rangle_v=|U\psi_1,...U\psi_n\rangle_v.$$

• Extend to Fock spaces $\mathcal{F}_v(\mathcal{H})$ and $\mathcal{F}(\mathcal{H})$:

$$\mathbf{U}\left(\sum_{n=0}^{\infty}|\Psi(n)\rangle\right)=\sum_{n=0}^{\infty}\mathbf{U}|\Psi(n)
angle$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Creation and Annihilation of Particles

Transitions between states of different particle numbers.

Creation and Annihilation of Particles

- Transitions between states of different particle numbers.
- Creation operator $a^*(\psi)$ in $\mathcal{F}_v(\mathcal{H})$:

$$a^*(\psi)|\psi_1,...,\psi_n
angle_v=\sqrt{n+1}|\psi,\psi_1,...,\psi_n
angle_v$$

Add a particle in individual state $|\psi\rangle$ to the system of *n* particles without modifying their respective states.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Creation and Annihilation of Particles

- Transitions between states of different particle numbers.
- Creation operator $a^*(\psi)$ in $\mathcal{F}_v(\mathcal{H})$:

$$a^*(\psi)|\psi_1,...,\psi_n\rangle_v=\sqrt{n+1}|\psi,\psi_1,...,\psi_n\rangle_v$$

Add a particle in individual state $|\psi\rangle$ to the system of *n* particles without modifying their respective states.

• Annihilation operator $a(\psi)$ — Hermitian conjugate of $a^*(\psi)$:

$$\begin{split} a(\psi)|\mathbf{0}\rangle &= 0,\\ a(\psi)|\psi_1,...,\psi_n\rangle_v &= \frac{1}{\sqrt{n}}\sum_{i=1}^n (v)^{i-1} \langle \psi|\psi_i\rangle |\psi_1,...,\psi_{i-1},\psi_{i+1},...,\psi_n\rangle_v \end{split}$$

Decrease the number of particles by one unit, while preserving the symmetry of state.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

- 1. Introduction
- 2. Quantum Case Statement
- 3. Syntax of Quantum Recursive Programs
- 4. Recursive Quantum Walks
- 5. Second Quantisation
- 6. Solving Recursive Equations in Free Fock Space
- 7. Quantum Recursion in Boson and Fermion Fock Spaces

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

8. Conclusion

Second quantisation provides us with necessary tools for defining semantics of quantum recursions!

Second quantisation provides us with necessary tools for defining semantics of quantum recursions!

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A domain of operators in free Fock space

- \mathcal{H} and \mathcal{K} two Hilbert spaces
- $\mathcal{F}(\mathcal{H})$ free Fock space over \mathcal{H} .

Second quantisation provides us with necessary tools for defining semantics of quantum recursions!

A domain of operators in free Fock space

- \mathcal{H} and \mathcal{K} two Hilbert spaces
- $\mathcal{F}(\mathcal{H})$ free Fock space over \mathcal{H} .
- $\mathcal{O}(\mathcal{F}(\mathcal{H})\otimes\mathcal{K})$ the set of all operators of the form

$$\mathbf{A} = \sum_{n=0}^{\infty} \mathbf{A}(n),$$

where $\mathbf{A}(n)$ is an operator in $\mathcal{H}^{\otimes n} \otimes \mathcal{K}$.

► Flat order: $\mathbf{A} = \sum_{n=0}^{\infty} \mathbf{A}(n)$, $\mathbf{B} = \sum_{n=0}^{\infty} \mathbf{B}(n)$

► Flat order:
$$\mathbf{A} = \sum_{n=0}^{\infty} \mathbf{A}(n)$$
, $\mathbf{B} = \sum_{n=0}^{\infty} \mathbf{B}(n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• $\mathbf{A} \sqsubseteq \mathbf{B}$ if and only if

• Flat order:
$$\mathbf{A} = \sum_{n=0}^{\infty} \mathbf{A}(n)$$
, $\mathbf{B} = \sum_{n=0}^{\infty} \mathbf{B}(n)$

- $A \sqsubseteq B$ if and only if
 - either for all $n \ge 0$, $\mathbf{A}(n) = \mathbf{B}(n)$, or

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- ► Flat order: $\mathbf{A} = \sum_{n=0}^{\infty} \mathbf{A}(n)$, $\mathbf{B} = \sum_{n=0}^{\infty} \mathbf{B}(n)$
 - $\mathbf{A} \sqsubseteq \mathbf{B}$ if and only if
 - either for all $n \ge 0$, $\mathbf{A}(n) = \mathbf{B}(n)$, or
 - ▶ there exists an integer n_0 such that $\mathbf{A}(n) = \mathbf{B}(n)$ for all $0 \le n \le n_0$ and $\mathbf{A}(n) = 0$ for all $n > n_0$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► Flat order:
$$\mathbf{A} = \sum_{n=0}^{\infty} \mathbf{A}(n)$$
, $\mathbf{B} = \sum_{n=0}^{\infty} \mathbf{B}(n)$

• $\mathbf{A} \sqsubseteq \mathbf{B}$ if and only if

• either for all
$$n \ge 0$$
, $\mathbf{A}(n) = \mathbf{B}(n)$, or

▶ there exists an integer n_0 such that $\mathbf{A}(n) = \mathbf{B}(n)$ for all $0 \le n \le n_0$ and $\mathbf{A}(n) = 0$ for all $n > n_0$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Product:

$$\mathbf{A} \cdot \mathbf{B} = \sum_{n=0}^{\infty} \left(\mathbf{A}(n) \cdot \mathbf{B}(n) \right).$$

► Flat order:
$$\mathbf{A} = \sum_{n=0}^{\infty} \mathbf{A}(n)$$
, $\mathbf{B} = \sum_{n=0}^{\infty} \mathbf{B}(n)$

• $\mathbf{A} \sqsubseteq \mathbf{B}$ if and only if

• either for all
$$n \ge 0$$
, $\mathbf{A}(n) = \mathbf{B}(n)$, or

- ▶ there exists an integer n_0 such that $\mathbf{A}(n) = \mathbf{B}(n)$ for all $0 \le n \le n_0$ and $\mathbf{A}(n) = 0$ for all $n > n_0$.
- Product:

$$\mathbf{A} \cdot \mathbf{B} = \sum_{n=0}^{\infty} \left(\mathbf{A}(n) \cdot \mathbf{B}(n) \right).$$

Guarded composition:

$$\Box_i \left(|i\rangle o \mathbf{A}_i
ight) = \sum_{n=0}^{\infty} \left(\sum_i \left(|i\rangle \langle i| \otimes \mathbf{A}_i(n)
ight)
ight).$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

• *C* — the set of quantum coins $inP = P[X_1, ..., X_m]$.

- *C* the set of quantum coins $inP = P[X_1, ..., X_m]$.
- $\mathcal{H}_C = \bigotimes_{c \in C} \mathcal{H}_c$, where \mathcal{H}_c is the Hilbert space of coin *c*.

- *C* the set of quantum coins in $P = P[X_1, ..., X_m]$.
- $\mathcal{H}_C = \bigotimes_{c \in C} \mathcal{H}_c$, where \mathcal{H}_c is the Hilbert space of coin *c*.
- The principal system of *P* is the composition of the systems denoted by principal variables in *P*.

- コン・4回シュービン・4回シューレー

- *C* the set of quantum coins in $P = P[X_1, ..., X_m]$.
- $\mathcal{H}_C = \bigotimes_{c \in C} \mathcal{H}_c$, where \mathcal{H}_c is the Hilbert space of coin *c*.
- The principal system of *P* is the composition of the systems denoted by principal variables in *P*.

- ロト・ 日本・ モー・ モー・ うらく

► *H* — the Hilbert space of the principal system.

Semantic functional of program scheme *P*:

$$\llbracket P \rrbracket : \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})^m \to \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})$$

For any $\mathbf{A}_1, ..., \mathbf{A}_m \in \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H}),$
$$\llbracket P \rrbracket (\mathbf{A}_1, ..., \mathcal{A}_m)$$

is inductively defined:

▶ If P = abort, then $\llbracket P \rrbracket (\mathbf{A}_1, ..., \mathbf{A}_m)$ is the zero operator $\mathbf{A} = \sum_{n=0}^{\infty} \mathbf{A}(n)$ with $\mathbf{A}(n) = 0$ (the zero operator in $\mathcal{H}_C^{\otimes n} \otimes \mathcal{H}$);

▲□▶▲□▶▲□▶▲□▶ □ のQで

Semantic functional of program scheme *P*:

$$\llbracket P \rrbracket : \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})^m \to \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H}).$$

For any $\mathbf{A}_1, ..., \mathbf{A}_m \in \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H}),$

$$\llbracket P \rrbracket (\mathbf{A}_1, ..., \mathcal{A}_m)$$

is inductively defined:

• If P = abort, then $\llbracket P \rrbracket (\mathbf{A}_1, ..., \mathbf{A}_m)$ is the zero operator $\mathbf{A} = \sum_{n=0}^{\infty} \mathbf{A}(n)$ with $\mathbf{A}(n) = 0$ (the zero operator in $\mathcal{H}_{\mathbb{C}}^{\otimes n} \otimes \mathcal{H}$);

• If $P = \mathbf{skip}$, then $\llbracket P \rrbracket (\mathbf{A}_1, ..., \mathbf{A}_m)$ is the identity operator $\mathbf{A} = \sum_{n=0}^{\infty} \mathbf{A}(n)$ with $\mathbf{A}(n) = I$ (the identity operator in $\mathcal{H}_{C}^{\otimes n} \otimes \mathcal{H}$);

Semantic functional of program scheme *P*:

$$\llbracket P \rrbracket : \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})^m \to \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H}).$$

For any $\mathbf{A}_1, ..., \mathbf{A}_m \in \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})$,

$$\llbracket P \rrbracket (\mathbf{A}_1, ..., \mathcal{A}_m)$$

is inductively defined:

- If P = abort, then $\llbracket P \rrbracket (\mathbf{A}_1, ..., \mathbf{A}_m)$ is the zero operator $\mathbf{A} = \sum_{n=0}^{\infty} \mathbf{A}(n)$ with $\mathbf{A}(n) = 0$ (the zero operator in $\mathcal{H}_{C}^{\otimes n} \otimes \mathcal{H}$);
- If $P = \mathbf{skip}$, then $\llbracket P \rrbracket (\mathbf{A}_1, ..., \mathbf{A}_m)$ is the identity operator $\mathbf{A} = \sum_{n=0}^{\infty} \mathbf{A}(n)$ with $\mathbf{A}(n) = I$ (the identity operator in $\mathcal{H}_{C}^{\otimes n} \otimes \mathcal{H}$);
- If $P = U[\bar{q}, \bar{c}]$, then $\llbracket P \rrbracket(\mathbf{A}_1, ..., \mathbf{A}_m)$ is the cylindrical extension of U: $\mathbf{A} = \sum_{n=0}^{\infty} \mathbf{A}(n)$ with $\mathbf{A}(n) = U \otimes I_1 \otimes I_2 \otimes I_3$, where I_1 is the identity operator in the Hilbert space of those coins not in \bar{c} , I_2 is the identity operator in $\mathcal{H}_C^{\otimes(n-1)}$, and I_3 is the identity operator in the Hilbert space of those principal variables not in \bar{q} ;

• If
$$P = X_j \ (1 \le j \le m)$$
, then $[P](\mathbf{A}_1, ..., \mathbf{A}_m) = \mathbf{A}_j$;

If $P = P_1; P_2$, then $\llbracket P \rrbracket (\mathbf{A}_1, ..., \mathbf{A}_m) = \llbracket P_2 \rrbracket (\mathbf{A}_1, ..., \mathbf{A}_m) \cdot \llbracket P_1 \rrbracket (A_1, ..., A_m);$

If
$$P = \mathbf{qif} [c](\Box i \cdot |i\rangle \to P_i)$$
 fiq, then

$$\llbracket P \rrbracket(\mathbf{A}_1, ..., \mathbf{A}_m) = \Box_i (|i\rangle \to \llbracket P_i \rrbracket(\mathbf{A}_1, ..., \mathbf{A}_m)).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem — Continuity of Semantic Functionals Semantic functional

$$\llbracket P \rrbracket : (\mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})^m, \sqsubseteq) \to (\mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H}), \sqsubseteq)$$

is continuous.

Creation functional

Creation functional

 $C: \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H}) \to \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})$

is defined: for any $\mathbf{A} = \sum_{n=0}^{\infty} \mathbf{A}(n)$,

$$C(\mathbf{A}) = \sum_{n=0}^{\infty} (I \otimes \mathbf{A}(n))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

where *I* is the identity operator in \mathcal{H}_C .

Creation functional

Creation functional

 $C:\mathcal{O}(\mathcal{F}(\mathcal{H}_C)\otimes\mathcal{H})\to\mathcal{O}(\mathcal{F}(\mathcal{H}_C)\otimes\mathcal{H})$

is defined: for any $\mathbf{A} = \sum_{n=0}^{\infty} \mathbf{A}(n)$,

$$C(\mathbf{A}) = \sum_{n=0}^{\infty} (I \otimes \mathbf{A}(n))$$

where *I* is the identity operator in \mathcal{H}_C .

Intuition — creation functional C moves all coins c₀, c₁, c₂, ... one position to the right so that c_i becomes c_{i+1} for all i = 0, 1, 2, Thus, a new position is created at the left end for a new coin c₀.

Lemma — Continuity of Creation Functional Creation functional

$$C: (\mathcal{O}(\mathcal{F}(\mathcal{H}_C)\otimes\mathcal{H}),\sqsubseteq) \to (\mathcal{O}(\mathcal{F}(\mathcal{H}_C)\otimes\mathcal{H}),\sqsubseteq)$$

is continuous.

Corollary $P = P[X_1, ..., X_m]$ a program scheme. Define: $(C^{\otimes m} \circ \llbracket P \rrbracket)(\mathbf{A}_1, ..., \mathbf{A}_m) = \llbracket P \rrbracket (C(\mathbf{A}_1), ..., C(\mathbf{A}_m)).$

Then functional

$$C^{\otimes m} \circ \llbracket P \rrbracket : (\mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})^{\otimes m}, \sqsubseteq) \to (\mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H}), \sqsubseteq)$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is continuous.

Corollary $P = P[X_1, ..., X_m]$ a program scheme. Define: $(C^{\otimes m} \circ \llbracket P \rrbracket)(\mathbf{A}_1, ..., \mathbf{A}_m) = \llbracket P \rrbracket (C(\mathbf{A}_1), ..., C(\mathbf{A}_m)).$

Then functional

$$C^{\otimes m} \circ \llbracket P \rrbracket : (\mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})^{\otimes m}, \sqsubseteq) \to (\mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H}), \sqsubseteq)$$

is continuous.

Notation

Consider a recursive program *P* declared by system of recursive equations:

$$S: \begin{cases} X_1 \Leftarrow P_1, \\ \dots \\ X_m \Leftarrow P_m, \end{cases}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Notation

► System *S* of recursive equations induces semantic functional:

$$\begin{split} \llbracket S \rrbracket : \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})^{\otimes m} &\to \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})^m, \\ \llbracket S \rrbracket (\mathbf{A}_1, ..., \mathbf{A}_m) = ((C^m \circ \llbracket P_1 \rrbracket) (\mathbf{A}_1, ..., \mathbf{A}_m), ..., \\ (C^m \circ \llbracket P_m \rrbracket) (\mathbf{A}_1, ..., \mathbf{A}_m)) \end{split}$$

(ロト・日本)・モン・モン・モー のへで

Notation

► System *S* of recursive equations induces semantic functional:

$$\begin{split} \llbracket S \rrbracket : \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})^{\otimes m} &\to \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})^m, \\ \llbracket S \rrbracket (\mathbf{A}_1, ..., \mathbf{A}_m) = ((C^m \circ \llbracket P_1 \rrbracket) (\mathbf{A}_1, ..., \mathbf{A}_m), ..., \\ (C^m \circ \llbracket P_m \rrbracket) (\mathbf{A}_1, ..., \mathbf{A}_m)) \end{split}$$

Semantical functional

$$\llbracket S \rrbracket : (\mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})^{\otimes m}, \sqsubseteq) \to (\mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})^m, \sqsubseteq)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

is continuous.

Fixed point semantics

► Knaster-Tarski Fixed Point Theorem: [S] has the least fixed point $\mu[S]$.

Fixed point semantics

► Knaster-Tarski Fixed Point Theorem: [S] has the least fixed point $\mu[S]$.

Definition

The fixed point semantics of recursive program *P* declared by *S*:

$$\llbracket P \rrbracket_{fix} = \llbracket P \rrbracket (\mathbf{A}_1^*, ..., \mathbf{A}_m^*) \in \mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\mu \llbracket S \rrbracket = (\mathbf{A}_1^*, ..., \mathbf{A}_m^*).$

Theorem — Equivalence of Denotational Semantics and Operational Semantics

1. For each k, $\{\llbracket X_k^{(n)} \rrbracket\}_{n=0}^{\infty}$ is an increasing chain and

$$\llbracket X_k^{(\infty)} \rrbracket \stackrel{\triangle}{=} \lim_{n \to \infty} \llbracket X_k^{(n)} \rrbracket = \bigsqcup_{n=0}^{\infty} \llbracket X_k^{(n)} \rrbracket$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

exists in $\mathcal{O}(\mathcal{F}(\mathcal{H}_C)\otimes\mathcal{H})$.

Theorem — Equivalence of Denotational Semantics and Operational Semantics

1. For each k, $\{\llbracket X_k^{(n)} \rrbracket\}_{n=0}^{\infty}$ is an increasing chain and

$$\llbracket X_k^{(\infty)} \rrbracket \stackrel{\triangle}{=} \lim_{n \to \infty} \llbracket X_k^{(n)} \rrbracket = \bigsqcup_{n=0}^{\infty} \llbracket X_k^{(n)} \rrbracket$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

exists in $\mathcal{O}(\mathcal{F}(\mathcal{H}_C) \otimes \mathcal{H})$.

([[X₁^(∞)]], ..., [[X_m^(∞)]]) = μ[[S]] is the least fixed point of semantic functional [[S]].

Outline

- 1. Introduction
- 2. Quantum Case Statement
- 3. Syntax of Quantum Recursive Programs
- 4. Recursive Quantum Walks
- 5. Second Quantisation
- 6. Solving Recursive Equations in Free Fock Space
- 7. Quantum Recursion in Boson and Fermion Fock Spaces

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

8. Conclusion

Solutions of recursive equations in Boson/Fermion Fock space

Symmetrisation/anti-symmetrisation of the solutions of recursive equations in free Fock space!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Solutions of recursive equations in Boson/Fermion Fock space

Symmetrisation/anti-symmetrisation of the solutions of recursive equations in free Fock space!

Principal System Semantics

• Each state $|\Psi\rangle$ in Fock space $\mathcal{F}_v(\mathcal{H}_d)$ induces mapping:

 $\llbracket X, \Psi \rrbracket_p : \text{pure states} \to \text{partial density operators in } \mathcal{H}_p$ $\llbracket X, \Psi \rrbracket_p(|\psi\rangle) = tr_{\mathcal{F}(\mathcal{H}_d)}(|\Phi\rangle\langle\Phi|)$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

where $|\Phi\rangle = \llbracket X \rrbracket (|\Psi\rangle \otimes |\psi\rangle)$

 Principal system semantics of X with coin initialisation |Ψ⟩: mapping [[X, Ψ]]_p. Example — Recursive Quantum Walk

$$\begin{cases} X \Leftarrow T_L[p] \oplus_{H[d]} (T_R[p]; Y), \\ Y \Leftarrow (T_L[p]; X) \oplus_{H[d]} T_R[p] \end{cases}$$

• Coherent state of bosons in Boson Fock space $\mathcal{F}_+(\mathcal{H})$:

$$|\psi\rangle_{\rm coh} = \exp\left(-\frac{1}{2}\langle\psi|\psi\rangle\right)\sum_{n=0}^{\infty}\frac{[a^*(\psi)]^n}{n!}|\mathbf{0}\rangle$$

Example — Recursive Quantum Walk

$$\begin{cases} X \Leftarrow T_L[p] \oplus_{H[d]} (T_R[p]; Y), \\ Y \Leftarrow (T_L[p]; X) \oplus_{H[d]} T_R[p] \end{cases}$$

► Coherent state of bosons in Boson Fock space *F*₊(*H*):

$$|\psi\rangle_{\rm coh} = \exp\left(-\frac{1}{2}\langle\psi|\psi\rangle\right)\sum_{n=0}^{\infty}\frac{[a^*(\psi)]^n}{n!}|\mathbf{0}\rangle$$

The walk starts from position 0 and the coins are initialised in the coherent states of bosons corresponding to |L>:

$$\begin{split} \llbracket X, L_{\operatorname{coh}} \rrbracket_{p}(|0\rangle) &= \frac{1}{\sqrt{e}} \left(\sum_{k=0}^{\infty} \frac{1}{2^{2k+1}} |-1\rangle \langle -1| + \sum_{k=0}^{\infty} \frac{1}{2^{2k+2}} |2\rangle \langle 2| \right) \\ &= \frac{1}{\sqrt{e}} \left(\frac{2}{3} |-1\rangle \langle -1| + \frac{1}{3} |2\rangle \langle 2| \right). \end{split}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Outline

- 1. Introduction
- 2. Quantum Case Statement
- 3. Syntax of Quantum Recursive Programs
- 4. Recursive Quantum Walks
- 5. Second Quantisation
- 6. Solving Recursive Equations in Free Fock Space
- 7. Quantum Recursion in Boson and Fermion Fock Spaces

8. Conclusion

What kind of problems can be solved more conveniently by using quantum recursion?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- What kind of problems can be solved more conveniently by using quantum recursion?
- Hoare logic for quantum while-loops defined using quantum coins?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- What kind of problems can be solved more conveniently by using quantum recursion?
- Hoare logic for quantum while-loops defined using quantum coins?
 - Hoare logic for quantum while-programs with classical controls [Ying, TOPLAS'2011]

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- What kind of problems can be solved more conveniently by using quantum recursion?
- Hoare logic for quantum while-loops defined using quantum coins?
 - Hoare logic for quantum while-programs with classical controls [Ying, TOPLAS'2011]

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What kind of physical systems can be used to implement quantum recursion? Thank You!